Accurate estimation of the mining process is vital for the optimal allocation of mineral resources. The development of any country is precisely connected with the management of mineral resources. Therefore, the forecasting of mineral resources contributed much to management, planning, and a maximum allocation of mineral resources. However, it is challenging because of its multiscale variability, nonlinearity, nonstationarity, and high irregularity. In this paper, we proposed two revised hybrid methods to address these issues to predict mineral resources. Our methods are based on denoising, decomposition, prediction, and ensemble principles that are applied to the production of mineral resource time-series data. The performance of the proposed methods is compared with the existing traditional one-stage model (without denoised and decomposition strategies) and two-stage hybrid models (based on denoised strategy), and three-stage hybrid models (with denoised and decomposition strategies). The performance of these methods is evaluated using mean relative error (MRE), mean absolute error (MAE), and mean square error (MSE) as evaluation measures for the production of four principle mineral resources of Pakistan. It is concluded that the proposed framework for the prediction of mineral resources indicated better performance as compared to other existing one-stage, two-stage, and three-stage models. Furthermore, the prediction accuracy of the revised hybrid model is improved by reducing the complexity of the production of mineral resource time-series data.
The first case of COVID-19 in Kuwait was reported on February 24, 2020. There is a need to develop a prediction model for estimating this epidemic size. In this study, we aimed to develop and compare several prediction models using real-time data of COVID-19 from February 24 to June 12, 2020. We modeled the uncertainty and non-stationary real-time data of COVID-19 cases using a multilayer model with different decomposition techniques. We applied our proposed hybrid methodology to predict COVID-19 cases in Kuwait. We further evaluated the performance of the novel hybrid model with others using mean relative error, mean absolute error, and mean square error. We found that our proposed hybrid approach performed better than others for predicting COVID-19 cases.
The production data of mineral resources are noisy, nonstationary, and nonlinear. Therefore, some techniques are required to address the problem of nonstationarity and complexity of noises in it. In this paper, two hybrid models (EMD-CEEMDAN-EBT-MM and WA-CEEMDAN-EBT-MM) flourish to improve mineral production prediction. First, we use empirical mode decomposition (EMD) and wavelet analysis (WA) to denoise the data. Second, ensemble empirical mode decomposition (EEMD) and complete ensemble empirical mode decomposition (CEEMDAN) are used for the decomposition of nonstationary data into intrinsic mode function (IMF). Then, empirical Bayesian threshold (EBT) is applied on noise dominant IMFs to consolidate noises, which are further used as input in the data-driven model. Next, other noise-free IMFs are used in the stochastic model as input for the prediction of minerals. At last, the predicted IMFs are ensemble for final prediction. The proposed strategy is exemplified using Pakistan's four major mineral resources. To measure the prediction performance of all the models, three methods, that is, mean relative error, mean square error, and mean absolute percentage error, are used. Our proposed framework WA-CEEMDAN-EBT-MM has shown improvement with minimum mean absolute percentage error value compared to other existing models in prediction accuracy for all four minerals. Therefore, our proposed strategy can predict the noisy and nonstationary time-series data with an efficient mechanism. Hence, it will be helpful to the policymakers for making policies and planning in mineral resource management.
COVID-19 is basically a medium size RNA virus and the nucleic acid is about 30 kb long, positive in sense, single stranded and polyadenylated. The RNA which is found in this virus is the largest known RNA and codes for a large polyprotein. In addition, coronaviruses are capable of genetic recombination if 2 viruses infect the same cell at the same time. SARS-CoV emerged first in southern China and rapidly spread around the globe in 2002–2003. In November 2002, an unusual epidemic of atypical pneumonia with a high rate of nosocomial transmission to health-care workers occurred in Foshan, Guangdong, China. In March 2003, a novel CoV was confirmed to be the causative agent for SARS, and was thus named SARS-CoV. Despite the report of a large number of virus-based and host-based treatment options with potent in vitro activities for SARS and MERS, only a few are likely to fulfil their potential in the clinical setting in the foreseeable future. Most drugs have one or more major limitations that prevent them from proceeding beyond the in vitro stage. First, many drugs have high EC50/Cmax ratios at clinically relevant dosages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.