Biopharmaceuticals are of increasing importance in the treatment of a variety of diseases. A remaining concern associated with their production is the potential introduction of adventitious agents into their manufacturing process, which may compromise the pathogen safety of a product and potentially cause stock-out situations for important medical supplies. To ensure the safety of biological therapeutics, regulatory guidance requires adventitious agent testing (AAT) of the bulk harvest. AAT is a deliberately promiscuous assay procedure which has been developed to indicate, ideally, the presence of any viral contaminant. One of the most important cell lines used in the production of biopharmaceuticals is Chinese hamster ovary (CHO) cells and while viral infections of CHO cells have occurred, a systematic screen of their virus susceptibility has never been published. We investigated the susceptibility of CHO cells to infection by 14 different viruses, including members of 12 families and representatives or the very species that were implicated in previously reported production cell infections. Based on our results, four different infection outcomes were distinguished, based on the possible combinations of the two factors (i) the induction, or not, of a cytopathic effect and (ii) the ability, or not, to replicate in CHO cells. Our results demonstrate that the current AAT is effective for the detection of viruses which are able to replicate in CHO cells. Due to the restricted virus susceptibility of CHO cells and the routine AAT of bulk harvests, our results provide re-assurance for the very high safety margins of CHO cell-derived biopharmaceuticals.
Background In recent months numerous health care professional acquired COVID-19 at the workplace resulting in significant shortages in medical and nursing staff. We investigated how prior COVID-19 affects SARS-CoV-2 vaccination and how such knowledge could facilitate frugal vaccination strategies. Methods In a cohort of 41 healthcare professionals with (n=14) and without (n=27) previous SARS-CoV-2 infection, we assessed the immune status before, during and after vaccination with BNT162b2. The humoral immune response was assessed by receptor binding domain ELISA and different SARS-CoV-2 neutralisation assays using wildtype and pseudo-typed viruses. T cell immunity against SARS-CoV-2 surface and nucleocapsid peptides were studied using interferon-γ release assays and intracellular flow cytometry. Vaccine-related side effects were captured. Findings Prior COVID-19 resulted in improved vaccine responses both in the B and T cell compartment. In vaccine recipients with prior COVID-19, the first vaccine dose induced high antibody concentrations comparable to seronegative vaccine recipients after two injections. This translated into more efficient neutralisation of virus particles, even more pronounced than expected from the RBD ELISA results. Furthermore, T cell responses were stronger in convalescents and particularly strong against the SARS-CoV-2 nucleocapsid protein. Interpretation Herein, we corroborate recent findings suggesting that in convalescents a single vaccine dose is sufficient to boost adequate in vitro neutralisation of SARS-CoV-2 and therefore may be sufficient to induce adequate protection against severe COVID-19. New spike mutated virus variants render the highly conserved nucleocapsid protein – eliciting strong SARS-CoV-2 specific T cell immunity – an interesting additional vaccine target. Funding Christian Doppler Research Association, Johannes Kepler University Linz
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.