Organic farming (OF) has significantly increased in importance in recent decades. Disease management in OF is largely based on the maintenance of biological diversity and soil health by balanced crop rotations, including nitrogen-fixing and cover crops, intercrops, additions of manure and compost and reductions in soil tillage. Most soil-borne diseases are naturally suppressed, while foliar diseases can sometimes be problematic. Only when a severe disease outbreak is expected are pesticides used that are approved for OF. A detailed overview is given of cultural and biological control measures. Attention is also given to regulated pesticides. We conclude that a systems approach to disease management is required, and that interdisciplinary research is needed to solve lingering disease problems, especially for OF in the tropics. Some of the organic regulations are in need of revision in close collaboration with various stakeholders.
For organic potato producers the two main challenges are disease and nutrient management. Both factors are limited by regulations that on the one hand prohibit the use of chemical fertilisers, especially nitrogen and, on the other hand, most synthetic pesticides. Late blight, caused by Phytophthora infestans is commonly thought to be the factor most limiting yield. However, because there is no really effective fungicide available to control late blight, there are virtually no yield loss data available for organic farming conditions. In this paper the state of the art of organic potato management with respect to disease and nutrient management is summarised. In a second part, the interactive effects of N-availability in the soil, climatic conditions and late blight were studied in the presence and absence of copper fungicides from 2002-2004 for the mid-early main-crop cv. Nicola. From the experimental work it became clear that copper fungicides in most cases do slow down epidemics adding an average of 3 days to the growth duration. However, only 30% of the variation in yield could be attributed to disease reduction. A model including disease reduction, growth duration and temperature sum from planting until 60% disease severity was reached, and soil mineral N contents at 10 days after emergence could explain 75% of the observed variation in yield. However, the model failed when N-supply was extremely high. The implications of the results on the management of organic potatoes with respect to cultivar choice, nutrient and disease management are discussed. In conclusion, several points emerge from the results: In organic farming, yields are foremost limited by nutrient availability in spring and early summer. The effects of late blight on yields may often be overestimated and cannot be deducted from results in conventional farming because of the strong interaction with nutrient status. Resistance clearly remains the most important strategy against late blight in organic potato production. However, as important or even more important than resistance is the early development and bulking behaviour and the ability of a cultivar to make use of organic nutrients
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.