This paper is the first analytical approach to the study of twenty heavy metals in the gluten-free foods for celiac people. Only the ICP-MS technique was used. One of the advantages about the use of ICP-MS for this characterization is the high sensitivity that improved the limits of quantification levels for some elements that are present at low quantities in some samples.The concentration values of As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn in seventeen glutenfree food samples are reported. The highest arsenic and molybdenum levels were measured in Rice noodle from China (0.088 and 0.47 mg kg −1 , respectively). The highest concentrations of some metals (Cu, Ba, Cd, Pb, Hg, Sr and V) were found in bread and breadstick samples produced in different bakeries located at Palermo. To examine the overall heavy metal concentrations in all gluten-free samples analyzed, metal pollution index (MPI) was calculated. Gluten-free foods analyzed contain levels of trace elements under the limits tolerated by the law. Considering the average concentrations of some trace elements found in the present study, it can be concluded that they are inadequate if compared with the recommended daily intake by international organisms, providing from 1.1 to 53% of the RDI for the essential metals. These conclusions are in good agreement to some authors affirming that commercial gluten-free cereal foods, made of refined flours or starches, are of lower nutritional value compared to their wheat counterparts. The metal pollution index and health risk index of heavy metals also suggest that Cd, Pb and Ni contamination in most of the test gluten-free food had potential for human health risk due to consumption of food at contaminated not industrial laboratory. Considering our data, health risk index was lower than 1 for all the samples except nickel in a sample of pasta.
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. . However in the analysis of YLOID in seawater, a better determination needs an efficient combination of ICP-MS measurement with a preconcentration technique. To perform an ultra-trace analysis in seawater, we have validated an analytical procedure involving an improved modified co-precipitation on iron hydroxides to ensure the simultaneous quantitative recovery of YLOID, Zr and Hf contents with measurement by a quadrupole ICP-MS.The validity of the method was assessed through a series of co-precipitation experiments and estimation of several quality control parameters for method validation, namely working range and its linearity, detection limit, quantification limit, precision and spike recoveries, and the methodological blank choice, are introduced, evaluated and discussed. Analysis of NASS-6, is the first report on the latest seawater reference material for YLOID, hafnium and zirconium.
Diabetes is expected to increase up to 700 million people worldwide with type 2 diabetes being the most frequent. The use of nutritional interventions is one of the most natural approaches for managing the disease. Minerals are of paramount importance in order to preserve and obtain good health and among them molybdenum is an essential component. There are no studies about the consumption of biofortified food with molybdenum on glucose homeostasis but recent studies in humans suggest that molybdenum could exert hypoglycemic effects. The present study aims to assess if consumption of lettuce biofortified with molybdenum influences glucose homeostasis and whether the effects would be due to changes in gastrointestinal hormone levels and specifically Peptide YY (PYY), Glucagon-Like Peptide 1 (GLP-1), Glucagon-Like Peptide 2 (GLP-2), and Gastric Inhibitory Polypeptide (GIP). A cohort of 24 people was supplemented with biofortified lettuce for 12 days. Blood and urine samples were obtained at baseline (T0) and after 12 days (T2) of supplementation. Blood was analyzed for glucose, insulin, insulin resistance, β-cell function, and insulin sensitivity, PYY, GLP-1, GLP-2 and GIP. Urine samples were tested for molybdenum concentration. The results showed that consumption of lettuce biofortified with molybdenum for 12 days did not affect beta cell function but significantly reduced fasting glucose, insulin, insulin resistance and increased insulin sensitivity in healthy people. Consumption of biofortified lettuce did not show any modification in urine concentration of molybdenum among the groups. These data suggest that consumption of lettuce biofortified with molybdenum improves glucose homeostasis and PYY and GIP are involved in the action mechanism.
Along the Jordan Valley‐Dead Sea Fault area several natural waters in springs, wells, and catchments occur. The chemical‐physical characters of the studied waters allowed for the first time the investigation of the Zr and Hf geochemical behavior, apart from REE, extended to a wide range of Eh, temperature, salinity, and pH conditions. The results of this study indicate that the dissolved Zr and Hf distribution in natural waters is strongly influenced by redox conditions since these in turn drive the deposition of Fe‐oxyhydroxides or pyrite. In oxidizing waters saturated or oversaturated in Fe‐oxyhydroxides (Group 1), superchondritic Zr/Hf values are measured. On the contrary, in waters where Eh < 0 values occur (Group 2), chondritic Zr/Hf values are found. Superchondritic Zr/Hf values are produced by the preferential Hf scavenging onto Fe‐oxyhydroxides that is inhibited under reducing conditions consistent with the water oversaturation relative to pyrite. Redox conditions also influence the amplitude of Ce and Eu anomalies. Oxidized Group‐1 waters show negative Ce anomalies related to the oxidative Ce scavenging as CeO2 onto Fe‐oxyhydroxide. Reduced Group‐2 waters show positive Eu anomaly values consistent with the larger Eu2+ concentration relative to Eu3+ in these waters suggested by model calculations. The higher stability of Eu2+ with respect to its trivalent neighbors along the REE series can explain the above mentioned positive Eu anomaly values. The middle‐REE enrichment observed in shale‐normalized REE patterns of studied waters can be ascribed to carbonate and/or gypsum dissolution.
Fe-Mn crusts and nodulesRare metals Rare earth elements Comparisons with land-based resources Ferromanganese (Fe-Mn) crusts are strongly enriched relative to the Earth's lithosphere in many rare and critical metals, including Co, Te, Mo, Bi, Pt, W, Zr, Nb, Y, and rare-earth elements (REEs). Fe-Mn nodules are strongly enriched in Ni, Cu, Co, Mo, Zr, Li, Y, and REEs. Compared to Fe-Mn crusts, nodules are more enriched in Ni, Cu, and Li, with subequal amounts of Mo and crusts are more enriched in the other metals. The metal ions and complexes in seawater are sorbed onto the two major host phases, FeO(OH) with a positively charged surface and MnO 2 with a negatively charged surface. Metals are also derived from diagenetically modified sediment pore fluids and incorporated into most nodules. Seafloor massive sulfides (SMS), especially those in arc and back-arc settings, can also be enriched in rare metals and metalloids, such as Cd, Ga, Ge, In, As, Sb, and Se. Metal grades for the elements of economic interest in SMS (Cu, Zn, Au, Ag) are much greater than those in land-based volcanogenic massive sulfides. However, their tonnage throughout the global ocean is poorly known and grade/tonnage comparisons with land-based deposits would be premature. The Clarion-Clipperton Fe-Mn Nodule Zone (CCZ) in the NE Pacific and the prime Fe-Mn crust zone (PCZ) in the central Pacific are the areas of greatest economic interest for nodules and crusts and grades and tonnages for those areas are moderately well known. We compare the grades and tonnages of nodules and crusts in those two areas with the global terrestrial reserves and resources. Nodules in the CCZ have more Tl (6000 times), Mn, Te, Ni, Co, and Y than the entire global terrestrial reserve base for those metals. The CCZ nodules also contain significant amounts of Cu, Mo, W, Li, Nb, and rare earth oxides (REO) compared to the global land-based reserves. Fe-Mn crusts in the PCZ have significantly more Tl (1700 times), Te (10 times more), Co, and Y than the entire terrestrial reserve base. Other metals of significance in the PCZ crusts relative to the total global land-based reserves are Bi, REO, Nb, and W. CCZ nodules and PCZ crusts are also compared with the two largest existing land-based REE mines, Bayan Obo in China and Mountain Pass in the USA. The land-based deposits are higher grade but lower tonnage deposits. Notably, both land-based deposits have b 1% heavy REEs (HREEs), whereas the CCZ has 26% HREEs and the PCZ, 18% HREEs; the HREEs have a much greater economic value. Radioactive Th concentrations are appreciably higher in the land-based deposits than in either type of marine deposit. A discussion of the differences between terrestrial and marine impacts and mine characteristics is also presented, including the potential for rare metals and REEs in marine deposits to be recovered as byproducts of mining the main metals of economic interest in nodules and crusts.Published by Elsevier B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.