Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now regarded as a critical One Health issue. One Health’s interconnected domains contribute to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local and global scale, which is a significant risk factor for global health. The persistence and spread of resistant microbial species, and the association of determinants at the human-animal-environment interface can alter microbial genomes, resulting in resistant superbugs in various niches. ABR is motivated by a well-established link between three domains: human, animal, and environmental health. As a result, addressing ABR through the One Health approach makes sense. Several countries have implemented national action plans based on the One Health approach to combat antibiotic-resistant microbes, following the Tripartite’s Commitment Food and Agriculture Organization (FAO)-World Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The ABR has been identified as a global health concern, and efforts are being made to mitigate this global health threat. To summarize, global interdisciplinary and unified approaches based on One Health principles are required to limit the ABR dissemination cycle, raise awareness and education about antibiotic use, and promote policy, advocacy, and antimicrobial stewardship.
Antibiotic exposure leads to massive selective pressures that initiate the emergence and spread of antibiotic resistance in commensal and pathogenic bacteria. The slow process of developing new antibiotics makes this approach counterintuitive for combatting the rapid emergence of new antibiotic resistant pathogens. Therefore, alternative approaches such as, the development of nucleic acid-based anti-bacterial treatments, anti-bacterial peptides, bacteriocins, anti-virulence compounds and bacteriophage therapies should be exploited to cope infections caused by resistant superbugs. In this editorial, we discuss how the newly popular CRISPR-Cas system has been applied to combat antibiotic resistance.
The emergence of carbapenem-resistant bacterial pathogens is a significant and mounting health concern across the globe. At present, carbapenem resistance (CR) is considered as one of the most concerning resistance mechanisms and mainly found in gram-negative bacteria of the Enterobacteriaceae family. Although carbapenem resistance has been recognized in Enterobacteriaceae from last 20 years or so, recently it emerged as a global health issue as CR clonal dissemination of various Enterobacteriaceae members especially E. coli, and Klebsiella pneumoniae are reported from across the globe at an alarming rate. Phenotypically, carbapenems resistance is in due to the two key mechanisms, like structural mutation coupled with β-lactamase production and the ability of the pathogen to produce carbapenemases which ultimately hydrolyze the carbapenem. Additionally, penicillin-binding protein modification and efflux pumps are also responsible for the development of carbapenem resistance. Carbapenemases are classified into different classes which include Ambler classes A, B, and D. Several mobile genetic elements (MGEs) have their potential role in carbapenem resistance like Tn4401, Class I integrons, IncFIIK2, IncF1A, and IncI2. Taking together, resistance against carbapenems is continuously evolving and posing a significant health threat to the community. Variable mechanisms that are associated with carbapenem resistance, different MGEs, and supplementary mechanisms of antibiotic resistance in association with virulence factors are expanding day by day. Timely demonstration of this global health concern by using molecular tools, epidemiological investigations, and screening may permit the suitable measures to control this public health menace.
The interest in the therapeutic use of probiotic microorganisms has been increased during the last decade although the doubts have ascended about the probiotics mainly because their beneficial effects are not fully understood, and, in many cases, their usefulness has not been validated in clinical trials. Consequently, the notion got a considerable interest in those strains having proven probiotic potential to be engineered for improvement in their beneficial features. The process of genetic engineering can also be used for probiotic strains for the reversion of antimicrobial resistance and other modifications for their safer and effective human applications. The lactic acid bacilli are predominantly opposite as they already have gained attention owing to their health-promoting benefits and their safety for human consumption; therefore, their use, especially as a delivery agent of vaccines and drugs, is gaining attention. The tailoring of probiotic strains will not only improve the data regarding the probiotic potential of these strains but also clinch the doubts concerning these probiotics. This article focuses on the approaches of bioengineered probiotics and discusses the potential prospects for their therapeutic applications including immunomodulation, cognitive health, and anticancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.