This paper presents a framework that can transform reconfigurable structures into systems with continuous equilibrium. The method involves adding optimized springs that counteract gravity to achieve a system with a nearly flat potential energy curve. The resulting structures can move or reconfigure effortlessly through their kinematic paths and remain stable in all configurations. Remarkably, our framework can design systems that maintain continuous equilibrium during reorientation, so that a system maintains a nearly flat potential energy curve even when it is rotated with respect to a global reference frame. This ability to reorient while maintaining continuous equilibrium greatly enhances the versatility of deployable and reconfigurable structures by ensuring they remain efficient and stable for use in different scenarios. We apply our framework to several planar four-bar linkages and explore how spring placement, spring types, and system kinematics affect the optimized potential energy curves. Next, we show the generality of our method with more complex linkage systems that carry external masses and with a three-dimensional origami-inspired deployable structure. Finally, we adopt a traditional structural engineering approach to give insight on practical issues related to the stiffness, reduced actuation forces, and locking of continuous equilibrium systems. Physical prototypes support the computational results and demonstrate the effectiveness of our method. The framework introduced in this work enables the stable, and efficient actuation of reconfigurable structures under gravity, regardless of their global orientation. These principles have the potential to revolutionize the design of robotic limbs, retractable roofs, furniture, consumer products, vehicle systems, and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.