PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4+PD-1+ and CD8+PD-1+ lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8+PD1+ in PBMC when compared with controls. On the other hand, increased frequency of CD4+ and CD8+ T cells expressing PD-1(+) accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-γ and higher levels of TGF-β were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.
Squamous cell carcinoma (SCC) is one of the most common human cancers worldwide. Recent studies show that regulatory T cells (Treg) have a critical role in the modulation of an antitumor immune response, and consequently the SCC development. Because the accumulation of Tregs at the tumor site is, in part, due to selective recruitment through CCR5- and CCR5-associated chemokines, we investigated the role of CCR5 in the SCC development. Our findings showed that CCR5-deficient mice (CCR5KO) were efficient in controlling papilloma's incidence when compared with wild-type mice. Analysis of tumor lesions in wild-type (WT) and CCR5KO mice revealed that lack of CCR5 lead to significant reduction in frequency of Tregs and increased of CD4 T cells into the tumors. Moreover, the adoptive transfer of naturally occurring Tregs CD4CD25CCR5, CD4CD25CCR5 or CD8CCR5 conventional T cells to CCR5KO mice resulted in an increased papilloma incidence. Interestingly, adoptive transfer of WT CD4CD25CCR5 cells to CCR5KO mice induced more undifferentiated SCC lesions, characterized by higher infiltration of macrophages and dendritic cells. In this study, we also demonstrated that Treg migration to the tumor microenvironment is mediated by CCR5, and these cells are promoting tumor growth via inhibition of antitumor cells such as cytotoxic CD8 T cells. Our findings reinforce the therapeutic potential of CCR5 inhibition for cancer treatment, and indicate an attractive approach for SCC treatment. .
Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.