Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAVs that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that mutation A135E is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. Additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. (250 words) Importance Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these ‘keys’ (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority binds NeuGc. NeuGc is present in species like horses, pigs, and mice, but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor-binding domain (RBD) and an N-terminal domain (NTD) which, in other coronaviruses, includes a glycan-binding cleft. However, for the SARS-CoV-2 NTD protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of Variants of Concern (VoC) shows antigenic pressure, which can be an indication of functionality. To analyze gain or loss of glycan-binding in VoC, trimeric fluorescent NTD proteins were used. Binding properties were analyzed biochemically on Vero E6 cells and tissue samples. Unexpectedly, the SARS-CoV-2 Beta (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The Beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity towards 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. This demonstrates plasticity for improved engagement to sialic acids, possibly under immunological pressure.
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein–glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.
This study investigates the effects of simultaneous inoculation of a selected Saccharomyces cerevisiae yeast strain with two different commercial strains of wine bacteria Oenococcus oeni at the beginning of the alcoholic fermentation on the kinetics of malolactic fermentation (MLF), wine chemical composition, and organoleptic characteristics in comparison with spontaneous MLF in Tempranillo grape must from Castilla-La Mancha (Spain). Evolution of MLF was assessed by the periodic analysis of L-malic acid through the enzymatic method, and most common physiochemical parameters and sensory traits were evaluated using a standardized sensory analysis. The samples were analyzed by GC/MS in SCAN mode using a Trace GC gas chromatograph and a DSQII quadrupole mass analyzer. Co-inoculation reduced the overall fermentation time by up to 2 weeks leading to a lower increase in volatile acidity. The fermentation-derived wine volatiles profile was distinct between the co-inoculated wines and spontaneous MLF and was influenced by the selected wine bacteria used in co-inoculation. Co-inoculation allows MLF to develop under reductive conditions and results in wines with very few lactic and buttery flavors, which is related to the impact of specific compounds like 2,3-butanedione. This compound has been also confirmed as being dependent on the wine bacteria used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.