Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (DpH ¼ 0.5) and warming (þ48C; 308C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.
Many seahorse species are already threatened worldwide, and we do not know how they will endure an additional threat as climate change. Our results show that adult seahorses (Hippocampus guttulatus) seem to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification.
Cleaning interactions are textbook examples of mutualisms. On coral reefs, most fishes engage in cooperative interactions with cleaners fishes, where they benefit from ectoparasite reduction and ultimately stress relief. Furthermore, such interactions elicit beneficial effects on clients’ ecophysiology. However, the potential effects of future ocean warming (OW) and acidification (OA) on these charismatic associations are unknown. Here we show that a 45-day acclimation period to OW (+3 °C) and OA (980 μatm pCO 2 ) decreased interactions between cleaner wrasses ( Labroides dimidiatus ) and clients ( Naso elegans ). Cleaners also invested more in the interactions by providing tactile stimulation under OA. Although this form of investment is typically used by cleaners to prolong interactions and reconcile after cheating, interaction time and client jolt rate (a correlate of dishonesty) were not affected by any stressor. In both partners, the dopaminergic (in all brain regions) and serotoninergic (forebrain) systems were significantly altered by these stressors. On the other hand, in cleaners, the interaction with warming ameliorated dopaminergic and serotonergic responses to OA. Dopamine and serotonin correlated positively with motivation to interact and cleaners interaction investment (tactile stimulation). We advocate that such neurobiological changes associated with cleaning behaviour may affect the maintenance of community structures on coral reefs.
Despite the long evolutionary history of this group, the challenges brought by the Anthropocene have been inflicting an extensive pressure over sharks and their relatives. Overexploitation has been driving a worldwide decline in elasmobranch populations, and rapid environmental change, triggered by anthropogenic activities, may further test this group's resilience. In this context, we searched the literature for peer-reviewed studies featuring a sustained (>24 h) and controlled exposure of elasmobranch species to warming, acidification, and/or deoxygenation: three of the most pressing symptoms of change in the ocean. In a standardized comparative framework, we conducted an array of mixed-model meta-analyses (based on 368 control-treatment contrasts from 53 studies) to evaluate the effects of these factors and their combination as experimental treatments. We further compared these effects across different attributes (lineages, climates, lifestyles, reproductive modes, and life stages) and assessed the direction of impact over a comprehensive set of biological responses (survival, development, growth, aerobic metabolism, anaerobic metabolism, oxygen transport, feeding, behavior, acid-base status, thermal tolerance, hypoxia tolerance, and cell stress). Based on the present findings, warming appears as the most influential factor, with clear directional effects, namely decreasing development time and increasing aerobic metabolism, feeding, and thermal tolerance. While warming influence was pervasive across attributes, acidification effects appear to be more context-specific, with no perceivable directional trends across biological responses apart from the necessary to achieve acid-base balance. Meanwhile, despite its potential for steep impacts, deoxygenation has been the most neglected factor, with data paucity ultimately precluding sound conclusions. Likewise, the implementation of multi-factor treatments has been mostly restricted to the combination of warming and acidification, with effects approximately matching those of warming. Despite considerable progress over recent years, research regarding the impact of these drivers on elasmobranchs lags behind other taxa, with more research required to disentangle many of the observed effects. Given the current levels of extinction risk and the quick pace of global change, it is further crucial that we integrate the knowledge accumulated through different scientific approaches into a holistic perspective to better understand how this group may fare in a changing ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.