We present results from a study of 15 red giant members of the intermediate-metallicity globular cluster (GC) FSR 1758 using high-resolution, near-infrared spectra collected with the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2) that were obtained as part of CAPOS (the bulge Cluster APOgee Survey). Since its very recent discovery as a massive GC in the bulge region, evoking the name Sequoia, this has been an intriguing object with a highly debated origin, and initially led to the suggestion of a purported progenitor dwarf galaxy of the same name. In this work, we use new spectroscopic and astrometric data to provide additional clues as to the nature of FSR 1758. Our study confirms the GC nature of FSR 1758, and as such we report the existence of the characteristic N-C anticorrelation and Al-N correlation for the first time. We thereby reveal the existence of the multiple-population phenomenon, similar to that observed in virtually all GCs. Furthermore, the presence of a population with strongly enriched aluminum makes it unlikely that FSR 1758 is the remnant nucleus of a dwarf galaxy because Al-enhanced stars are uncommon in dwarf galaxies. We find that FSR 1758 is slightly more metal rich than previously reported in the literature; this source has a mean metallicity [Fe/H] between −1.43 to −1.36, depending on the adopted atmospheric parameters and a scatter within observational error, again pointing to its GC nature. Overall, the α-enrichment (≳ + 0.3 dex), Fe-peak (Fe, Ni), light (C, N), and odd-Z (Al) elements follow the trend of intermediate-metallicity GCs. Isochrone fitting in the Gaia bands yields an estimated age of ∼11.6 Gyr. We used the exquisite kinematic data, including our CAPOS radial velocities and Gaia eDR3 proper motions, to constrain the N-body density profile of FSR 1758, and found that it is as massive (∼2.9 ± 0.6 × 105 M⊙) as NGC 6752. We confirm a retrograde and eccentric orbit for FSR 1758. A new examination of its dynamical properties with the GravPot16 model favors an association with the Gaia-Enceladus-Sausage accretion event. Thus, paradoxically, the cluster that gave rise to the name of the Sequoia dwarf galaxy does not appear to belong to this specific merging event.
We present the first high-resolution abundance analysis of the globular cluster VVV CL001, which resides in a region dominated by high interstellar reddening toward the Galactic bulge. Using H-band spectra acquired by the Apache Point Observatory Galactic Evolution Experiment, we identified two potential members of the cluster, and estimated from their Fe i lines that the cluster has an average metallicity of [Fe/H] = −2.45 with an uncertainty due to systematics of 0.24 dex. We find that the light-(N), α-(O, Mg, Si), and Odd-Z (Al) elemental abundances of the stars in VVV CL001 follow the same trend as other Galactic metal-poor globular clusters. This makes VVV CL001 possibly the most metal-poor globular cluster identified so far within the Sun’s galactocentric distance and likely one of the most metal-deficient clusters in the Galaxy after ESO280-SC06. Applying statistical isochrone fitting, we derive self-consistent age, distance, and reddening values, yielding an estimated age of 11.9 − 4.05 + 3.12 Gyr at a distance of 8.22 − 1.93 + 1.84 kpc, revealing that VVV CL001 is also an old GC in the inner Galaxy. The Galactic orbit of VVV CL001 indicates that this cluster lies on a halo-like orbit that appears to be highly eccentric. Both chemistry and dynamics support the hypothesis that VVV CL001 could be an ancient fossil relic left behind by a massive merger event during the early evolution of the Galaxy, likely associated with either the Sequoia or the Gaia–Enceladus–Sausage structures.
The central (‘bulge’) region of the Milky Way is teeming with a significant fraction of mildly metal-deficient stars with atmospheres that are strongly enriched in cyanogen (12C14N). Some of these objects, which are also known as nitrogen-enhanced stars, are hypothesised to be relics of the ancient assembly history of the Milky Way. Although the chemical similarity of nitrogen-enhanced stars to the unique chemical patterns observed in globular clusters has been observed, a direct connection between field stars and globular clusters has not yet been proven. In this work, we report on high-resolution, near-infrared spectroscopic observations of the bulge globular cluster NGC 6723, and the serendipitous discovery of a star, 2M18594405−3651518, located outside the cluster (near the tidal radius) but moving on a similar orbit, providing the first clear piece of evidence of a star that was very likely once a cluster member and has recently been ejected. Its nitrogen abundance ratio ([N/Fe] ≳ + 0.94) is well above the typical Galactic field-star levels, and it exhibits noticeable enrichment in the heavy s-process elements (Ce, Nd, and Yb), along with moderate carbon enrichment; all characteristics are known examples in globular clusters. This result suggests that some of the nitrogen-enhanced stars in the bulge likely originated from the tidal disruption of globular clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.