A necessary first step in the development of technologies such as artificial photosynthesis is understanding the photoexcitation process within the basic building blocks of naturally occurring light harvesting complexes (LHCs). The most important of these building blocks in biological LHCs such as LHC II from green plants are the chlorophyll a (Chl a) and chlorophyll b (Chl b) chromophores dispersed throughout the protein matrix. However, efforts to describe such systems are still hampered by the lack of computationally efficient and accurate methods that are able to describe optical absorption in large biomolecules. In this work, we employ a highly efficient linear combination of atomic orbitals (LCAOs) to represent the Kohn–Sham (KS) wave functions at the density functional theory (DFT) level and perform time-dependent density functional theory (TDDFT) calculations in either the reciprocal space and frequency domain (LCAO-TDDFT-k-ω) or real space and time domain (LCAO-TDDFT-r-t) of the optical absorption spectra of Chl a and b monomers and dimers. We find that our LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t calculations reproduce results obtained with a plane-wave (PW) representation of the KS wave functions (PW-TDDFT-k-ω) but with a significant reduction in computational effort. Moreover, by applying the Gritsenko, van Leeuwen, van Lenthe, and Baerends solid and correlation derivative discontinuity correction Δx to the KS eigenenergies, with both LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t methods, we are able to semiquantitatively reproduce the experimentally measured photoinduced dissociation results. This work opens the path to first principles calculations of optical excitations in macromolecular systems.
Single-walled carbon nanotubes (SWCNTs) can be doped with potassium, similar to graphite, leading to intercalation compounds. These binary systems exhibit a clear metallic character. However, the entire picture of how electron doping (edoping) modifies the SWCNTs' vibrational spectra as a function of their diameter, chirality, and metallicity is still elusive. Herein, we present a detailed study of the intercalation and solid state reduction of metallic and semiconducting enriched HiPco ® SWCNTs. We performed a combined experimental and theoretical study of the evolution of their Raman response with potassium exposure, focusing specifically on their radial breathing mode (RBM). We found the charge donated from the potassium atoms occupies anti-bonding π orbitals of the SWCNTs, weakening their C-C bonds, and reducing the RBM frequency. This RBM downshift with increasing doping level is quasi-linear with a step-like behavior when the Fermi level crosses a van Hove singularity for semiconducting species. Moreover, this weakening of the C-C bonds is greater with decreasing curvature, or increasing diameter. Overall, this suggests the RBM downshift with e-doping is proportional to both the SWCNT's integrated density of states (DOS) ϱ(ε) and diameter d. We have provided a precise and complete description of the complex electron doping mechanism in SWCNTs up to a charge density of -18 me/C, far beyond that achievable by standard gate voltage studies, based on their excitation energy, diameter, band gap energy, chiral angle, and metallicity. This work is highly relevant to tuning the electronic properties of SWCNTs for applications in nanoelectronics, plasmonics, and thermoelectricity.
We use a dielectric response theory to describe electrodynamic forces on a charged particle moving parallel to a supported two-dimensional layer. Using a Kramers–Kronig relation, we show that the image force on the particle can be expressed in terms of the energy loss function of the target materials. This enables us to analyze the stopping and the image forces on the particle on equal footing in the frequency–momentum domain encompassing all the energy loss channels in the target. Using the example of a graphene layer on a silicon carbide substrate, we show that both the image and stopping forces can be decomposed into contributions coming from two modes arising from hybridization of the sheet plasmon in doped graphene and a transverse optical phonon in the substrate.
Understanding, optimizing, and controlling the optical absorption process, exciton gemination, and electron-hole separation and conduction in low dimensional systems is a fundamental problem in materials science. However, robust and efficient methods capable of modelling the optical absorbance of low dimensional macromolecular systems and providing physical insight into the processes involved have remained elusive. We employ a highly efficient linear combination of atomic orbitals (LCAOs) representation of the Kohn-Sham (KS) orbitals within time dependent density functional theory (TDDFT) in the reciprocal space (k) and frequency (ω) domains, as implemented within our LCAO-TDDFT-k-ω code, applying either a priori or a posteriori the derivative discontinuity correction of the exchange functional Δ x to the KS eigenenergies as a scissors operator. In so doing we are able to provide a semi-quantitative description of the photoabsorption cross section, conductivity, and dielectric function for prototypical 0D, 1D, 2D, and 3D systems within the optical limit ( q → 0 + ) as compared to both available measurements and from solving the Bethe-Salpeter equation with quasiparticle G 0 W 0 eigenvalues (G 0 W 0 -BSE). Specifically, we consider 0D fullerene (C 60 ), 1D metallic (10, 0) and semiconducting (10, 10) single-walled carbon nanotubes, 2D graphene (Gr) and phosphorene (Pn), and 3D rutile (R-TiO 2 ) and anatase (A-TiO 2 ). For each system, we also employ the spatially and energetically resolved electron-hole spectral density to provide direct physical insight into the nature of their optical excitations. These results demonstrate the reliability, applicability, efficiency, and robustness of our LCAO-TDDFT-k-ω code, and open the pathway to the computational design of macromolecular systems for optoelectronic, photovoltaic, and photocatalytic applications in silico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.