To examine the consequences of nigrostriatal denervation and L-dopa treatment on the basal ganglia output system, we analyzed, by quantitative in situ hybridization, the messenger RNA coding for glutamic acid decarboxylase (Mr 67,000) (GAD67 mRNA) in pallidal cells from patients with Parkinson's disease (PD), monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) receiving or not receiving L-dopa, and their respective control subjects. In MPTP-treated monkeys, the expression of GAD67 mRNA was increased in cells from the internal pallidum, and this effect was abolished by L-dopa treatment. There were no differences in the levels of GAD67 mRNA between patients with PD, who were all treated with L-dopa, and control subjects. These results indicate that the level of GAD67 mRNA is increased in the cells of the internal pallidum after nigrostriatal dopaminergic denervation and that this increase can be reversed by L-dopa therapy.
Background Multiple system atrophy (MSA) is a neurodegenerative condition characterized by variable combinations of parkinsonism, autonomic failure, cerebellar ataxia and pyramidal features. Although the distribution of synucleinopathy correlates with the predominant clinical features, the burden of pathology does not fully explain observed differences in clinical presentation and rate of disease progression. We hypothesized that the clinical heterogeneity in MSA is a consequence of variability in the seeding activity of α-synuclein both between different patients and between different brain regions. Methods The reliable detection of α-synuclein seeding activity derived from MSA using cell-free amplification assays remains challenging. Therefore, we conducted a systematic evaluation of 168 different reaction buffers, using an array of pH and salts, seeded with fully characterized brain homogenates from one MSA and one PD patient. We then validated the two conditions that conferred the optimal ability to discriminate between PD- and MSA-derived samples in a larger cohort of 40 neuropathologically confirmed cases, including 15 MSA. Finally, in a subset of brains, we conducted the first multi-region analysis of seeding behaviour in MSA. Results Using our novel buffer conditions, we show that the physicochemical factors that govern the in vitro amplification of α-synuclein can be tailored to generate strain-specific reaction buffers that can be used to reliably study the seeding capacity from MSA-derived α-synuclein. Using this novel approach, we were able to sub-categorize the 15 MSA brains into 3 groups: high, intermediate and low seeders. To further demonstrate heterogeneity in α-synuclein seeding in MSA, we conducted a comprehensive multi-regional evaluation of α-synuclein seeding in 13 different regions from 2 high seeders, 2 intermediate seeders and 2 low seeders. Conclusions We have identified unexpected differences in seed-competent α-synuclein across a cohort of neuropathologically comparable MSA brains. Furthermore, our work has revealed a substantial heterogeneity in seeding activity, driven by the PBS-soluble α-synuclein, between different brain regions of a given individual that goes beyond immunohistochemical observations. Our observations pave the way for future subclassification of MSA, which exceeds conventional clinical and neuropathological phenotyping and considers the structural and biochemical heterogeneity of α-synuclein present. Finally, our methods provide an experimental framework for the development of vitally needed, rapid and sensitive diagnostic assays for MSA.
To examine the effects of nigrostriatal denervation on the substantia nigra pars reticulata (SNpr), one of the main outputs of the basal ganglia, we used quantitative in situ hybridization to analyze the messenger RNA coding for Mr 67,000 glutamic acid decarboxylase (GAD67 mRNA) in the SNpr neurons from patients with Parkinson's disease (PD), monkeys rendered parkinsonian by 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP), and their respective controls. In MPTP-intoxicated monkeys, the expression of GAD67 mRNA was increased in the SNpr neurons, and the increase was reversed by L-dopa treatment. There were no differences in the level of GAD67 mRNA between PD patients who had been treated with L-dopa and control subjects. Combined with the previously reported increased expression of GAD67 mRNA in the internal segment of the pallidum of MPTP-intoxicated monkeys, these data suggest that the gamma-aminobutyric acid (GABAergic) activity of the output system of the basal ganglia is globally increased by nigrostriatal denervation. We also analyzed the level of GAD67 mRNA expression in the superior colliculus, a structure that receives the inhibitory influence of the GABAergic neurons of the SNpr and that is involved in eye movement control. GAD67 mRNA expression was reduced in both MPTP-intoxicated monkeys, whether or not they received L-dopa therapy, and PD patients, compared to their respective controls. This decrease may result from the hyperactivity of the inhibitory nigrotectal pathway, but also from other influences since it was not corrected by L-dopa therapy. These changes may account for the slight ocular motor and visuospatial cognitive impairment occurring in PD, even after L-dopa therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.