Gas turbine engine design requires considerations not only for long-term steady operation, but also for critical transient events. Aircraft engines undergo significant stress during takeoff and landing while power generation turbines must be flexible for hot restarts as renewable energy sources come on and offline. During these transient cycles, engines sustain wear and degradation that can lead to a reduction in the lifespan of their components and more frequent, costly maintenance. Cooling flows are often used to mitigate these effects, but can lead to complex and problematic flow interactions. This study uses high frequency response pressure probes and heat flux gauges in the rim seal cavity of a one-stage research turbine to characterize the properties of large-scale flow structures during transient operation. A continuous-duration turbine testing facility provides the ability to assess the importance of these transients by first reaching steady state operation prior to imposing transient behaviors. Although previous studies have conducted similar measurements for steady purge flows and wheel speeds, varying these parameters to simulate transient effects revealed several unique phenomena not identifiable with discrete steady measurements. The measurement approach connects the varied transient parameter to the behavior of the flow structures to enable a better understanding of the type of instability observed and the root cause of its formation. In particular, a relationship between instability cell formation and rim sealing effectiveness was identified using experimental data and was supported through computational simulations.
Gas turbine engine design requires considerations not only for long-term steady operation, but also for critical transient events. Aircraft engines undergo significant stress during takeoff and landing while power generation turbines must be flexible for hot restarts as renewable energy sources come on and offline. During these transient cycles, engines sustain wear and degradation that can lead to a reduction in the lifespan of their components and more frequent, costly maintenance. Cooling flows are often used to mitigate these effects, but can lead to complex and problematic flow interactions. This study uses high frequency response pressure probes and heat flux gauges in the rim seal cavity of a one-stage research turbine to characterize the properties of large-scale flow structures during transient operation. A continuous-duration turbine testing facility provides the ability to assess the importance of these transients by first reaching steady state operation prior to imposing transient behaviors. Although previous studies have conducted similar measurements for steady purge flows and wheel speeds, varying these parameters to simulate transient effects revealed several unique phenomena not identifiable with discrete steady measurements. The measurement approach connects the varied transient parameter to the behavior of the flow structures to enable a better understanding of the type of instability observed and the root cause of its formation. In particular, a relationship between instability cell formation and rim sealing effectiveness was identified using experimental data and was supported through computational simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.