Esta es la versión de autor de la comunicación de congreso publicada en: This is an author produced version of a paper published in: Abstract. We describe an approach taken for automatically associating entries from an on-line encyclopedia with concepts in an ontology or a lexical semantic network. It has been tested with the Simple English Wikipedia and WordNet, although it can be used with other resources. The accuracy in disambiguating the sense of the encyclopedia entries reaches 91.11% (83.89% for polysemous words). It will be applied to enriching ontologies with encyclopedic knowledge.
Esta es la versión de autor de la comunicación de congreso publicada en: This is an author produced version of a paper published in: Abstract. This paper describes an automatic approach to identify lexical patterns which represent semantic relationships between concepts, from an on-line encyclopedia. Next, these patterns can be applied to extend existing ontologies or semantic networks with new relations. The experiments have been performed with the Simple English Wikipedia and WordNet 1.7. A new algorithm has been devised for automatically generalising the lexical patterns found in the encyclopedia entries. We have found general patterns for the hyperonymy, hyponymy, holonymy and meronymy relations and, using them, we have extracted more than 1200 new relationships that did not appear in WordNet originally. The precision of these relationships ranges between 0.61 and 0.69, depending on the relation.
El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription
AbstractThis paper describes an automatic approach to identify lexical patterns that represent semantic relationships between concepts in an on-line encyclopedia. Next, these patterns can be applied to extend existing ontologies or semantic networks with new relations. The experiments have been performed with the Simple English Wikipedia and WordNet 1.7. A new algorithm has been devised for automatically generalising the lexical patterns found in the encyclopedia entries. We have found general patterns for the hyperonymy, hyponymy, holonymy and meronymy relations and, using them, we have extracted more than 2600 new relationships that did not appear in WordNet originally. The precision of these relationships depends on the degree of generality chosen for the patterns and the type of relation, being around 60-70% for the best combinations proposed.
In this paper, we describe a rote extractor that learns patterns for finding semantic relationships in unrestricted text, with new procedures for pattern generalization and scoring. These include the use of partof-speech tags to guide the generalization, Named Entity categories inside the patterns, an edit-distance-based pattern generalization algorithm, and a pattern accuracy calculation procedure based on evaluating the patterns on several test corpora. In an evaluation with 14 entities, the system attains a precision higher than 50% for half of the relationships considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.