The accurate determination of the surface charge density at the mercury solution interface by the method of extrusion of mercury drops is impaired by the faradaic current caused by traces of electroactive species. This paper describes a new design of a hanging mercury drop electrode with accurate control of the extruded electrode area, to within 0.1%, together with a new and reliable procedure for correction of the faradaic current. The procedure is based on first obtaining the correction parameters in the presence of increasing amounts of electroactive species and then using these parameters for correction of the faradaic component so as to obtain the surface charge density of the electrode. Implementation of the method with a microcomputer controlled system provides automatic acquisition of corrected electrode charge density values as a function of the electrode potential. The results obtained with this new method are in excellent agreement with those obtained by other methods, as illustrated for aqueous sodium fluoride solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.