BackgroundTonsils provide an innovative in vivo model for investigating immune response to infections and allergens. However, data are scarce on the differences in tonsillar virus infections and immune responses between patients with tonsillar hypertrophy or recurrent tonsillitis. We investigated the differences in virus detection and T cell and interferon gene expression in patients undergoing tonsillectomy due to tonsillar hypertrophy or recurrent tonsillitis.MethodsTonsils of 89 surgical patients with tonsillar hypertrophy (n = 47) or recurrent tonsillitis (n = 42) were analysed. Patients were carefully characterized clinically. Standard questionnaire was used to asses preceding and allergy symptoms. Respiratory viruses were analysed in tonsils and nasopharynx by PCR. Quantitative real-time PCR was used to analyse intratonsillar gene expressions of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2 and Tbet.ResultsMedian age of the subjects was 15 years (range 2–60). Patients with tonsillar hypertrophy were younger, smoked less often, had less pollen allergy and had more adenovirus, bocavirus-1, coronavirus and rhinovirus in nasopharynx (all P < 0.05). Only bocavirus-1 was more often detected in hypertrophic tonsils (P < 0.05). In age-adjusted analysis, tonsillar hypertrophy was associated with higher mRNA expressions of IL-37 (P < 0.05).ConclusionsIntratonsillar T cell and interferon gene expressions appeared to be relatively stable for both tonsillar hypertrophy and recurrent tonsillitis. Of the studied cytokines, only newly discovered anti-inflammatory cytokine IL-37, was independently associated with tonsillar hypertrophy showing slightly stronger anti-inflammatory response in these patients.Electronic supplementary materialThe online version of this article (10.1186/s13601-018-0205-z) contains supplementary material, which is available to authorized users.
The laser-induced fluorescence method has been used to investigate collision-induced processes in the hydrogen-stretching vibrational overtone region of the ground electronic state of acetylene. The fluorescence signal has been dispersed by a high-resolution interferometer. Collision-induced rovibrational symmetry changes have been observed in the spectra.
Intracavity photoacoustic overtone spectrum of monofluoroacetylene, HCCF, has been recorded in the wave number region 10 750–14 500 cm−1 with a titanium:sapphire ring laser. The spectrum contains many dense vibration–rotation band systems which can be resolved with Doppler limited resolution. Altogether 58 individual overtone bands have been analyzed rotationally. Many of the observed bands show perturbations of which some have been attributed to anharmonic resonance interactions. A Fermi resonance model based on conventional rectilinear normal coordinate theory has been used to assign vibrationally bands from this work and from earlier studies. Many of the observed vibrational term values and rotational constants can be reproduced well with this model. The results show the importance of the Fermi resonance interactions at the high overtone excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.