Machine Learning (ML) systems often involve a re-training process to make better predictions and classifications. This re-training process creates a loophole and poses a security threat for ML systems. Adversaries leverage this loophole and design data poisoning attacks against ML systems. Data poisoning attacks are a type of attack in which an adversary manipulates the training dataset to degrade the ML system's performance. Data poisoning attacks are challenging to detect, and even more difficult to respond to, particularly in the Internet of Things (IoT) environment. To address this problem, we proposed DISTINÏCT, the first proactive data poisoning attack detection framework using distance measures. We found that Jaccard Distance (JD) can be used in the DISTINÏCT (among other distance measures) and we finally improved the JD to attain an Optimized JD (OJD) with lower time and space complexity. Our security analysis shows that the DISTINÏCT is secure against data poisoning attacks by considering key features of adversarial attacks. We conclude that the proposed OJD-based DISTINÏCT is effective and efficient against data poisoning attacks where in-time detection is critical for IoT applications with large volumes of streaming data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.