Background
Intensive endurance exercise may induce a broad spectrum of right ventricular (RV) adaptation/remodelling patterns. Late gadolinium enhancement (LGE) has also been described in cardiovascular magnetic resonance (CMR) of some endurance athletes and its clinical meaning remains controversial. Our aim was to characterize the features of contrast CMR and the observed patterns of the LGE distribution in a cohort of highly trained endurance athletes.
Methods
Ninety-three highly trained endurance athletes (> 12 h training/week at least during the last 5 years; 36 ± 6 years old; 53% male) and 72 age and gender-matched controls underwent a resting contrast CMR. In a subgroup of 28 athletes, T1 mapping was also performed.
Results
High endurance training load was associated with larger bi-ventricular and bi-atrial sizes and a slight reduction of biventricular ejection fraction, as compared to controls in both genders (p < 0.05). Focal LGE was significantly more prevalent in athletes than in healthy subjects (37.6% vs 2.8%; p < 0.001), with a typical pattern in the RV insertion points. In T1 mapping, those athletes who had focal LGE had higher extracellular volume (ECV) at the remote myocardium than those without (27 ± 2.2% vs 25.2 ± 2.1%; p < 0.05).
Conclusions
Highly trained endurance athletes showed a ten-fold increase in the prevalence of focal LGE as compared to control subjects, always confined to the hinge points. Additionally, those athletes with focal LGE demonstrated globally higher myocardial ECV values. This matrix remodelling and potential presence of myocardial fibrosis may be another feature of the athlete’s heart, of which the clinical and prognostic significance remains to be determined.
Improved clinical care has led to an increase in the number of adults with congenital heart disease (CHD) engaging in leisure time and competitive sports activities. Although the benefits of exercise in patients with CHD are well established, there is a low but appreciable risk of exercise-related complications. Published exercise recommendations for individuals with CHD are predominantly centred on anatomic lesions, hampering an individualized approach to exercise advice in this heterogeneous population. This document presents an update of the recommendations for competitive sports participation in athletes with cardiovascular disease published by the Sports Cardiology & Exercise section of the European Association of Preventive Cardiology (EAPC) in 2005. It introduces an approach which is based on the assessment of haemodynamic, electrophysiological and functional parameters, rather than anatomic lesions. The recommendations provide a comprehensive assessment algorithm which allows for patient-specific assessment and risk stratification of athletes with CHD who wish to participate in competitive sports.
This paper belongs to a series of recommendation documents for participation in leisure-time physical activity and competitive sports by the European Association of Preventive Cardiology (EAPC). Together with an accompanying paper on supraventricular arrhythmias, this second text deals specifically with those participants in whom some form of ventricular rhythm disorder is documented, who are diagnosed with an inherited arrhythmogenic condition, and/or who have an implanted pacemaker or cardioverter defibrillator. A companion text on recommendations in athletes with supraventricular arrhythmias is published in the European Journal of Preventive Cardiology. Since both texts focus on arrhythmias, they are the result of a collaboration between EAPC and the European Heart Rhythm Association (EHRA). The documents provide a framework for evaluating eligibility to perform sports, based on three elements, i.e. the prognostic risk of the arrhythmias when performing sports, the symptomatic impact of arrhythmias while performing sports, and the potential progression of underlying structural problems as the result of sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.