Plant pathogens cause significant losses to agricultural yields and increasingly threaten food security, ecosystem integrity and societies in general. Xylella fastidiosa is one of the most dangerous plant bacteria worldwide, causing several diseases with profound impacts on agriculture and the environment. Primarily occurring in the Americas, its recent discovery in Asia and Europe demonstrates that X. fastidiosa's geographic range has broadened considerably, positioning it as a reemerging global threat that has caused socioeconomic and cultural damage. X. fastidiosa can infect more than 350 plant species worldwide, and early detection is critical for its eradication. In this article, we show that changes in plant functional traits retrieved from airborne imaging spectroscopy and thermography can reveal X. fastidiosa infection in olive trees before symptoms are visible. We obtained accuracies of disease detection, confirmed by quantitative polymerase chain reaction, exceeding 80% when high-resolution fluorescence quantified by three-dimensional simulations and thermal stress indicators were coupled with photosynthetic traits sensitive to rapid pigment dynamics and degradation. Moreover, we found that the visually asymptomatic trees originally scored as affected by spectral plant-trait alterations, developed X. fastidiosa symptoms at almost double the rate of the asymptomatic trees classified as not affected by remote sensing. We demonstrate that spectral plant-trait alterations caused by X. fastidiosa infection are detectable previsually at the landscape scale, a critical requirement to help eradicate some of the most devastating plant diseases worldwide.
A dramatic outbreak of Xylella fastidiosa decimating olive was discovered in 2013 in Apulia, Southern Italy. This pathogen is a quarantine bacterium in the European Union (EU) and created unprecedented turmoil for the local economy and posed critical challenges for its management. With the new emerging threat to susceptible crops in the EU, efforts were devoted to gain basic knowledge on the pathogen biology, host, and environmental interactions (e.g., bacterial strain(s) and pathogenicity, hosts, vector(s), and fundamental drivers of its epidemics) in order to find means to control or mitigate the impacts of the infections. Field surveys, greenhouse tests, and laboratory analyses proved that a single bacterial introduction occurred in the area, with a single genotype, belonging to the subspecies pauca, associated with the epidemic. Infections caused by isolates of this genotype turned to be extremely aggressive on the local olive cultivars, causing a new disease termed olive quick decline syndrome. Due to the initial extension of the foci and the rapid spread of the infections, eradication measures (i.e., pathogen elimination from the area) were soon replaced by containment measures including intense border surveys of the contaminated area, removal of infected trees, and mandatory vector control. However, implementation of containment measures encountered serious difficulties, including public reluctance to accept control measures, poor stakeholder cooperation, misinformation from some media outlets, and lack of robust responses by some governmental authorities. This scenario delayed and limited containment efforts and allowed the bacterium to continue its rapid dissemination over more areas in the region, as shown by the continuous expansion of the official borders of the infected area. At the research level, the European Commission and regional authorities are now supporting several programs aimed to find effective methods to mitigate and contain the impact of X. fastidiosa on olives, the predominant host affected in this epidemic. Preliminary evidence of the presence of resistance in some olive cultivars represents a promising approach currently under investigation for long-term management strategies. The present review describes the current status of the epidemic and major research achievements since 2013.
Discovery of Xylella fastidiosa from olive trees with "Olive quick decline syndrome" in October 2013 on the west coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards during a 3-mo survey was the meadow spittlebug, Philaenus spumarius (L.) (Hemiptera: Aphrophoridae). Adult P. spumarius, collected in November 2013 from ground vegetation in X. fastidiosa-infected olive orchards, were 67% (40 out of 60) positive for X. fastidiosa by polymerase chain reaction (PCR) assays. Euscelis lineolatus Brullé were also collected but tested negative for the pathogen. Transmission tests with P. spumarius collected from the Salento area were, therefore, conducted. After a 96-h inoculation access period with 8 to 10 insects per plant and a 30-d incubation period, PCR results showed P. spumarius transmitted X. fastidiosa to two of five periwinkle plants but not to the seven olive plants. Sequences of PCR products from infected periwinkle were identical with those from X. fastidiosa-infected field trees. These data showed P. spumarius as a vector of X. fastidiosa strain infecting olives trees in the Salento Peninsula, Italy.
The recent introduction of Xylella fastidiosa in Europe and its involvement in the Olive Quick Decline Syndrome (OQDS) in Apulia (Salento, Lecce district, South Italy) led us to investigate the biology and transmission ability of the meadow spittlebug, Philaenus spumarius, which was recently demonstrated to transmit X. fastidiosa to periwinkle plants. Four xylem-sap-feeding insect species were found within and bordering olive orchards across Salento during a survey carried out from October 2013 to December 2014: P. spumarius was the most abundant species on non-olive vegetation in olive orchards as well as on olive foliage and was the only species that consistently tested positive for the presence of X. fastidiosa using real-time PCR. P. spumarius, whose nymphs develop within spittle on weeds during the spring, are likely to move from weeds beneath olive trees to olive canopy during the dry period (May to October 2014). The first X. fastidiosa-infective P. spumarius were collected in May from olive canopy: all the individuals previously collected on weeds tested negative for the bacterium. Experiments demonstrated that P. spumarius transmitted X. fastidiosa from infected to uninfected olive plants. Moreover, P. spumarius acquired X. fastidiosa from several host plant species in the field, with the highest acquisition rate from olive, polygala and acacia. Scanning electron microscopy (SEM) revealed bacterial cells resembling X. fastidiosa in the foreguts of adult P. spumarius. The data presented here are essential to plan an effective IPM strategy and limit further spread of the fastidious bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.