In this paper, the mechanical damage behavior is investigated based on the characteristic roughness on the surface and the orientation of superficial structures. The main goal is to explore the surface roughness on mechanically loaded copper conductors as a lifetime indicator. For this purpose, copper conductors are mechanically stressed in accordance with EN 50,396 and then examined metallographically and microscopically. The microstructure examination shows that the roughness is caused by material extrusion and cracks due to work hardening in the surface area. Using confocal microscopy, it is shown for the first time that significant formation of surface roughness takes place over the service life of copper conductors. The roughness increases monotonically, but not linearly with number of cycles, due to internal microstructural processes and can be divided into three sections. First inspections of the conductor surface over lifetime show a correlation between the intensity of structures orientated 45° to the loading direction and the roughness. This phenomenon, already known from microscopic slip lines, is thus also evident in macroscopic roughness formation and is well founded by the research theory on material extrusion along dislocation lines. In summary, a lifetime determination is possible based on its developing roughness which enables the utilization as a sensor element. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.