Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide potential new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin knockout AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion.Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2).Immunostaining and AFM revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cells treated with Erlotinib, an EGFR inhibitor, revealed upregulation of RhoA associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR, thereby stabilizing desmosome integrity via ROCK, might provide new treatment options for AC.
The epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase, which is dysregulated in several kinds of cancer and heart diseases. Arrhythmogenic cardiomyopathy (AC) is a familial heart disease in part caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity, may provide potential new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of EGFR inhibition on cardiomyocyte cohesion under physiological and pathophysiological conditions using the murine plakoglobin knockout AC model, in which EGFR was upregulated. EGFR inhibition led to enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and AFM revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly was observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to the cell borders. Thus, inhibiting EGFR, thereby stabilizing desmosome integrity, may provide new treatment options for AC.
Aims: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. Methods and Results IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), western blot analysis and Triton-X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells, and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. Conclusion Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC
A Disintegrin And Metalloprotease (ADAM) family proteins are involved in several cardiac diseases, and some ADAMs have been associated with cardiomyopathies. ADAM17 is known to cleave desmoglein 2 (DSG2), one of the proteins involved in the pathogenesis of arrhythmogenic cardiomyopathy (AC). Desmosomal stability is impaired in AC, an inheritable genetic disease, the underlying causes of which can be mutations in genes coding for proteins of the desmosome, such as DSG2, desmoplakin (DP), plakoglobin (PG), plakophilin 2 or desmocollin 2. Stabilizing desmosomal contacts can therefore be a treatment option. In the heart of the murine Jup−/− AC model, (Jup being the gene coding for PG) mice, elevated levels of p38MAPK, an activator of ADAM17, were found. However, ADAM17 levels were unaltered in Jup−/− mice hearts. Nonetheless, inhibition of ADAM17 led to enhanced cardiomyocyte cohesion in both Jup+/+ and Jup−/− mice, and in HL-1 cardiomyocytes. Further, enhanced cohesion in HL-1 cardiomyocytes after acute inhibition of ADAM17 was paralleled by enhanced localization of DSG2 and DP at the membrane, whereas no changes in desmosomal assembly or the desmosomal complex were observed. In conclusion, acute inhibition of ADAM17 might lead to reduced cleavage of DSG2, thereby stabilizing the desmosomal adhesion, evidenced by increased DSG2 and DP localization at cell borders and eventually cardiomyocyte cohesion. We believe that similar mechanisms exist in AC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.