In this paper we investigate the one-dimensional parabolic-parabolic Patlak-Keller-Segel model of chemotaxis. For the case when the diffusion coefficient of chemical substance is equal to two, in terms of travelling wave variables the reduced system appears integrable and allows the analytical solution. We obtain the exact soliton solutions, one of which is exactly the one-soliton solution of the Korteweg-de Vries equation.
In this paper we consider three different 1D parabolic-parabolic systems of chemotaxis. For these systems we obtain the exact analytical solutions in terms of traveling wave variables. * Electronic address: yurova-m@rambler.ru
In this chapter we consider several different parabolic-parabolic systems of chemotaxis which depend on time and one space coordinate. For these systems we obtain the exact analytical solutions in terms of traveling wave variables. Not all of these solutions are acceptable for biological interpretation, but there are solutions that require detailed analysis. We find this interesting, since chemotaxis is present in the continuous mathematical models of cancer growth and invasion (Anderson, Chaplain, Lolas, et al.) which are described by the systems of reaction-diffusiontaxis partial differential equations, and the obtaining of exact solutions to these systems seems to be a very interesting task, and a more detailed analysis is possible in a future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.