Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.
Candida albicans can be a yeast that is a commensal on the human body but can cause opportunistic or pathogenic infections. Candida infections may create serious health problems and as a result has initiated a search for new drugs with an antifungal action. Geraniol is an acyclic monoterpene alcohol with known pharmacological properties, including antimicrobial activity. The aim of this work was to evaluate the antifungal activity and mechanism(s) of geraniol against C. albicans strains. The minimum inhibitory concentration (MIC) was determined through broth microdilution techniques. We investigated possible geraniol activity on the fungal cell wall (sorbitol protect effect), cell membrane (geraniol to ergosterol binding), the time-kill curve, and its biological activity on the yeast's morphology. Amphotericin B was used as control, and all tests were performed in duplicate. The MIC of geraniol was 16 μg/ml (for 90% of isolates) but its probable mechanism of action did not involve the cell wall and ergosterol binding. In the morphological interference assay, we observed that the product inhibited pseudohyphae and chlamydoconidia formation. Time-dependent kill curve assay demonstrated that the fungicidal activity for MIC × 2 started at 2 h for the ATCC 76485 strain, and at 4 h for the LM-70 strain. Geraniol showed in vitro antifungal potential against strains of C. albicans but did not involve action on the cell wall or ergosterol. This study contributes to the development of new antifungal drugs, especially against Candida spp.
The enantiomers (R)-(+)-β-citronellol and (S)-(−)-β-citronellol are present in many medicinal plants, but little is understood about their bioactivity against Candida yeasts. This study aimed to evaluate the behavior of positive and negative enantiomers of β-citronellol on strains of Candida albicans and C. tropicalis involved in candidemia. The minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined. The evaluation of growth kinetics, mechanism of action, and association studies with Amphotericin B (AB) using the checkerboard method was also performed. R-(+)-β-citronellol and S-(−)-β-citronellol presented a MIC50% of 64 µg/mL and a MFC50% of 256 µg/mL for C. albicans strains. For C. tropicalis, the isomers exhibited a MIC50% of 256 µg/mL and a MFC50% of 1024 µg/mL. In the mechanism of action assay, both substances displayed an effect on the fungal membrane but not on the fungal cell wall. Synergism and indifference were observed in the association of R-(+)-β-citronellol and AB, while the association between S-(−)-β-citronellol and AB displayed synergism, additivity, and indifference. In conclusion, both isomers of β-citronellol presented a similar profile of antifungal activity. Hence, they can be contemplated in the development of new antifungal drugs providing that further research is conducted about their pharmacology and toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.