SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.
Our understanding of the X-linked lymphoproliferative syndrome (XLP) has advanced significantly in the last two years. The gene that is altered in the condition (SAP/SH2D1A) has been cloned and its protein crystal structure solved. At least two sets of target molecules for this small SH2 domain-containing protein have been identified: A family of hematopoietic cell surface receptors, i.e. the SLAM family, and a second molecule, which is a phosphorylated adapter. A SAP-like protein, EAT-2, has also been found to interact with this family of surface receptors. Several lines of evidence, including structural studies and analyses of missense mutations in XLP patients, support the notion that SAP/SH2D1A is a natural inhibitor of SH2-domain-dependent interactions with members of the SLAM family. However, details of its role in signaling mechanisms are yet to be unravelled. Further analyses of the SAP/SH2D1A gene in XLP patients have made it clear that the development of dys-gammaglobulinemia and B cell lymphoma can occur without evidence of prior EBV infection. Moreover, preliminary results of virus infections of a mouse in which the SAP/SH2D1A gene has been disrupted suggest that EBV infection is not per se critical for the development of XLP phenotypes. It appears therefore that the SAP/SH2D1A gene controls signaling via the SLAM family of surface receptors and thus may play a fundamental role in T cell and APC interactions during viral infections.
Rapid IgE desensitization provides temporary tolerization for patients who have presented severe hypersensitivity reactions to food and drugs, protecting them from anaphylaxis, but the underlying mechanisms are still incompletely understood. Thus, here we develop an effective and reproducible in vitro model of rapid IgE desensitization for mouse BM-derived mast cells (BMMCs) under physiologic calcium conditions, and we characterize its antigen specificity and primary events. BMMCs were challenged with DNP-human serum albumin conjugated (DNP-HSA) and/or OVA antigens, delivered either as a single dose (activation) or as increasing sequential doses (desensitization). Compared to activated cells, desensitized BMMCs had impaired degranulation, calcium flux, secretion of arachidonic acid products, early and late TNF-a production, IL-6 production, and phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK). OVA-desensitized cells responded to DNP and DNPdesensitized cells responded to OVA, proving specificity. Internalization of specific antigen, IgE and high-affinity receptor for IgE (FceRI) were impaired in desensitized BMMCs. Our results demonstrate that rapid IgE desensitization is antigen specific and inhibits early and late mast cell activation responses and internalization of the antigen/IgE/FceRI complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.