The acquisition of genomic instability is a crucial feature in tumor development and there are at least 3 distinct pathways in colorectal cancer pathogenesis: the chromosomal instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP) pathways. Most cases of colorectal cancer arise through the CIN pathway, which is characterized by widespread imbalances in chromosome number (aneuploidy) and loss of heterozygosity (LOH). It can result from defects in chromosomal segregation, telomere stability, and the DNA damage response, although the full complement of genes underlying CIN remains incompletely described. Coupled with the karyotypic abnormalities observed in CIN tumors are the accumulation of a characteristic set of mutations in specific tumor suppressor genes and oncogenes that activate pathways critical for colorectal cancer initiation and progression. Whether CIN creates the appropriate milieu for the accumulation of these mutations or vice versa remains a provocative and unanswered question. The goal of this review is to provide an updated perspective on the mechanisms that lead to CIN and the key mutations that are acquired in this pathway.
Bortezomib (PS-341, Velcade) is a potent and selective inhibitor of the proteasome that is currently under investigation for the treatment of solid malignancies. We have shown previously that bortezomib has activity in pancreatic cancer models and that the drug induces endoplasmic reticulum (ER) stress but also suppresses the unfolded protein response (UPR). Because the UPR is an important cytoprotective mechanism, we hypothesized that bortezomib would sensitize pancreatic cancer cells to ER stress-mediated apoptosis. Here, we show that bortezomib promotes apoptosis triggered by classic ER stress inducers (tunicamycin and thapsigargin) via a c-Jun NH 2 -terminal kinase (JNK)-dependent mechanism. We also show that cisplatin stimulates ER stress and interacts with bortezomib to increase ER dilation, intracellular Ca 2+ levels, and cell death. Importantly, combined therapy with bortezomib plus cisplatin induced JNK activation and apoptosis in orthotopic pancreatic tumors resulting in a reduction in tumor burden. Taken together, our data establish that bortezomib sensitizes pancreatic cancer cells to ER stress-induced apoptosis and show that bortezomib strongly enhances the anticancer activity of cisplatin. (Cancer Res 2005; 65(24): 11658-66)
The proteasome inhibitor bortezomib ( formerly known as PS-341) recently received Food and Drug Administration approval for the treatment of multiple myeloma, and its activity is currently being evaluated in solid tumors. Bortezomib triggers apoptosis in pancreatic cancer cells, but the mechanisms involved have not been fully elucidated. Here, we show that pancreatic cancer cells exposed to bortezomib formed aggregates of ubiquitin-conjugated proteins (''aggresomes'') in vitro and in vivo. Bortezomib-induced aggresome formation was determined to be cytoprotective and could be disrupted using histone deacetylase (HDAC) 6 small interfering RNA or chemical HDAC inhibitors, which resulted in endoplasmic reticulum stress and synergistic levels of apoptosis in vitro and in an orthotopic pancreatic cancer xenograft model in vivo. Interestingly, bortezomib did not induce aggresome formation in immortalized normal human pancreatic epithelial cells in vitro or in murine pancreatic epithelial cells in vivo. In addition, these cells did not undergo apoptosis following treatment with bortezomib, suberoylanilide hydroxamic acid, or the combination, showing tumor selectivity. Taken together, our study shows that inhibition of aggresome formation can strongly potentiate the efficacy of bortezomib and provides the foundation for clinical trials of bortezomib in combination with HDAC inhibitors for the treatment of pancreatic cancer.
Systematic EPC in advanced pancreatic cancer patients significantly improved QoL with respect to on-demand EPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.