Background Little is known about long-term recovery from COVID-19 disease, especially in non-hospitalized individuals. In this longitudinal study we present symptoms registered during the acute phase as well as long COVID, i.e. long-lasting COVID-19 symptoms, in patients from the Faroe Islands. Methods All consecutive patients with confirmed RT-PCR testing from April to June 2020 were invited to participate in this study for the assessment of long COVID. Demographic and clinical characteristics and self-reported acute and persistent symptoms were assessed using a standardized detailed questionnaire administered at enrollment and at repeated phone interviews in the period 22 th April to Aug 16 th. Results Of the 180 participants (96.3% of the 187 eligible COVID-19 patients), 53.1% reported persistence of at least one symptom after a mean of 125 days after symptoms onset, 33.3% reported one or two symptoms and 19.4% three or more symptoms. At the last follow-up, 46.7% were asymptomatic compared with 4.4 % during the acute phase. The most prevalent persistent symptoms were fatigue, loss of smell and taste, and arthralgias. Conclusions Our results show that it might take months for symptoms to resolve, even among non-hospitalized persons with mild illness course in the acute phase. Continued monitoring for long COVID is needed.
ImportanceSome individuals experience persistent symptoms after initial symptomatic SARS-CoV-2 infection (often referred to as Long COVID).ObjectiveTo estimate the proportion of males and females with COVID-19, younger or older than 20 years of age, who had Long COVID symptoms in 2020 and 2021 and their Long COVID symptom duration.Design, Setting, and ParticipantsBayesian meta-regression and pooling of 54 studies and 2 medical record databases with data for 1.2 million individuals (from 22 countries) who had symptomatic SARS-CoV-2 infection. Of the 54 studies, 44 were published and 10 were collaborating cohorts (conducted in Austria, the Faroe Islands, Germany, Iran, Italy, the Netherlands, Russia, Sweden, Switzerland, and the US). The participant data were derived from the 44 published studies (10 501 hospitalized individuals and 42 891 nonhospitalized individuals), the 10 collaborating cohort studies (10 526 and 1906), and the 2 US electronic medical record databases (250 928 and 846 046). Data collection spanned March 2020 to January 2022.ExposuresSymptomatic SARS-CoV-2 infection.Main Outcomes and MeasuresProportion of individuals with at least 1 of the 3 self-reported Long COVID symptom clusters (persistent fatigue with bodily pain or mood swings; cognitive problems; or ongoing respiratory problems) 3 months after SARS-CoV-2 infection in 2020 and 2021, estimated separately for hospitalized and nonhospitalized individuals aged 20 years or older by sex and for both sexes of nonhospitalized individuals younger than 20 years of age.ResultsA total of 1.2 million individuals who had symptomatic SARS-CoV-2 infection were included (mean age, 4-66 years; males, 26%-88%). In the modeled estimates, 6.2% (95% uncertainty interval [UI], 2.4%-13.3%) of individuals who had symptomatic SARS-CoV-2 infection experienced at least 1 of the 3 Long COVID symptom clusters in 2020 and 2021, including 3.2% (95% UI, 0.6%-10.0%) for persistent fatigue with bodily pain or mood swings, 3.7% (95% UI, 0.9%-9.6%) for ongoing respiratory problems, and 2.2% (95% UI, 0.3%-7.6%) for cognitive problems after adjusting for health status before COVID-19, comprising an estimated 51.0% (95% UI, 16.9%-92.4%), 60.4% (95% UI, 18.9%-89.1%), and 35.4% (95% UI, 9.4%-75.1%), respectively, of Long COVID cases. The Long COVID symptom clusters were more common in women aged 20 years or older (10.6% [95% UI, 4.3%-22.2%]) 3 months after symptomatic SARS-CoV-2 infection than in men aged 20 years or older (5.4% [95% UI, 2.2%-11.7%]). Both sexes younger than 20 years of age were estimated to be affected in 2.8% (95% UI, 0.9%-7.0%) of symptomatic SARS-CoV-2 infections. The estimated mean Long COVID symptom cluster duration was 9.0 months (95% UI, 7.0-12.0 months) among hospitalized individuals and 4.0 months (95% UI, 3.6-4.6 months) among nonhospitalized individuals. Among individuals with Long COVID symptoms 3 months after symptomatic SARS-CoV-2 infection, an estimated 15.1% (95% UI, 10.3%-21.1%) continued to experience symptoms at 12 months.Conclusions and RelevanceThis study presents modeled estimates of the proportion of individuals with at least 1 of 3 self-reported Long COVID symptom clusters (persistent fatigue with bodily pain or mood swings; cognitive problems; or ongoing respiratory problems) 3 months after symptomatic SARS-CoV-2 infection.
Objectives: Exposure to high concentrations of persistent organochlorines may cause fetal toxicity, but the evidence at low exposure levels is limited. Large studies with substantial exposure contrasts and appropriate exposure assessment are warranted. Within the framework of the EU (European Union) ENRIECO (ENvironmental Health RIsks in European Birth Cohorts) and EU OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life) projects, we examined the hypothesis that the combination of polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) adversely affects birth weight.Methods: We used maternal and cord blood and breast milk samples of 7,990 women enrolled in 15 study populations from 12 European birth cohorts from 1990 through 2008. Using identical variable definitions, we performed for each cohort linear regression of birth weight on estimates of cord serum concentration of PCB-153 and p,p´-DDE adjusted for gestational age and a priori selected covariates. We obtained summary estimates by meta-analysis and performed analyses of interactions.Results: The median concentration of cord serum PCB-153 was 140 ng/L (range of cohort medians 20–484 ng/L) and that of p,p´-DDE was 528 ng/L (range of cohort medians 50–1,208 ng/L). Birth weight decreased with increasing cord serum concentration of PCB-153 after adjustment for potential confounders in 12 of 15 study populations. The meta-analysis including all cohorts indicated a birth weight decline of 150 g [95% confidence interval (CI): –250, –50 g] per 1-µg/L increase in PCB-153, an exposure contrast that is close to the range of exposures across the cohorts. A 1-µg/L increase in p,p´-DDE was associated with a 7-g decrease in birth weight (95% CI: –18, 4 g).Conclusions: The findings suggest that low-level exposure to PCB (or correlated exposures) impairs fetal growth, but that exposure to p,p´-DDE does not. The study adds to mounting evidence that low-level exposure to PCBs is inversely associated with fetal growth.
BackgroundMethylmercury (MeHg), a worldwide contaminant found in fish and seafood, has been linked to an increased risk of cardiovascular mortality.ObjectiveWe examined 42 Faroese whaling men (30–70 years of age) to assess possible adverse effects within a wide range of MeHg exposures from consumption of pilot whale meat.MethodsWe assessed exposure levels from mercury analysis of toenails and whole blood (obtained at the time of clinical examination), and a hair sample collected 7 years previously. Outcome measures included heart rate variability (HRV), blood pressure (BP), common carotid intima-media thickness (IMT), and brainstem auditory evoked potentials (BAEP). We carried out multiple regression and structural equation model (SEM) analyses to determine the confounder-adjusted effect of mercury exposure. Taking into account correlations among related measures, we categorized exposure and outcomes in groups to derive latent exposure and response variables in SEMs. We used multiple regression analysis to compare the predictive validity of individual exposure biomarkers and the latent exposure variable on individual and latent outcomes.ResultsThe toenail mercury concentrations varied widely and had a geometric mean of 2.0 μg/g; hair concentrations averaged about 3-fold higher. Mercury exposure was significantly associated with increased BP and IMT. This effect was reflected by SEMs, but mercury in toenails tended to be the best effect predictor.ConclusionsThe results support the notion that increased MeHg exposure promotes the development of cardiovascular disease.
Background: Many pregnancy and birth cohort studies investigate the health effects of early-life environmental contaminant exposure. An overview of existing studies and their data is needed to improve collaboration, harmonization, and future project planning.Objectives: Our goal was to create a comprehensive overview of European birth cohorts with environmental exposure data.Methods: Birth cohort studies were included if they a) collected data on at least one environmental exposure, b) started enrollment during pregnancy or at birth, c) included at least one follow-up point after birth, d) included at least 200 mother–child pairs, and e) were based in a European country. A questionnaire collected information on basic protocol details and exposure and health outcome assessments, including specific contaminants, methods and samples, timing, and number of subjects. A full inventory can be searched on www.birthcohortsenrieco.net.Results: Questionnaires were completed by 37 cohort studies of > 350,000 mother–child pairs in 19 European countries. Only three cohorts did not participate. All cohorts collected biological specimens of children or parents. Many cohorts collected information on passive smoking (n = 36), maternal occupation (n = 33), outdoor air pollution (n = 27), and allergens/biological organisms (n = 27). Fewer cohorts (n = 12–19) collected information on water contamination, ionizing or nonionizing radiation exposures, noise, metals, persistent organic pollutants, or other pollutants. All cohorts have information on birth outcomes; nearly all on asthma, allergies, childhood growth and obesity; and 26 collected information on child neurodevelopment.Conclusion: Combining forces in this field will yield more efficient and conclusive studies and ultimately improve causal inference. This impressive resource of existing birth cohort data could form the basis for longer-term and worldwide coordination of research on environment and child health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.