BackgroundTerminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs.ResultsA combination of two distributional models – Random Indexing and Random Permutation – employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora – a corpus of clinical text and a corpus of medical journal articles – further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms.ConclusionsThis study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models – with different model parameters – and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks.
Automatic recognition of clinical entities in the narrative text of health records is useful for constructing applications for documentation of patient care, as well as for secondary usage in the form of medical knowledge extraction. There are a number of named entity recognition studies on English clinical text, but less work has been carried out on clinical text in other languages. This study was performed on Swedish health records, and focused on four entities that are highly relevant for constructing a patient overview and for medical hypothesis generation, namely the entities: Disorder, Finding, Pharmaceutical Drug and Body Structure. The study had two aims: to explore how well named entity recognition methods previously applied to English clinical text perform on similar texts written in Swedish; and to evaluate whether it is meaningful to divide the more general category Medical Problem, which has been used in a number of previous studies, into the two more granular entities, Disorder and Finding. Clinical notes from a Swedish internal medicine emergency unit were annotated for the four selected entity categories, and the inter-annotator agreement between two pairs of annotators was measured, resulting in an average F-score of 0.79 for Disorder, 0.66 for Finding, 0.90 for Pharmaceutical Drug and 0.80 for Body Structure. A subset of the developed corpus was thereafter used for finding suitable features for training a conditional random fields model. Finally, a new model was trained on this subset, using the best features and settings, and its ability to generalise to held-out data was evaluated. This final model obtained an F-score of 0.81 for Disorder, 0.69 for Finding, 0.88 for Pharmaceutical Drug, 0.85 for Body Structure and 0.78 for the combined category Disorder+Finding. The obtained results, which are in line with or slightly lower than those for similar studies on English clinical text, many of them conducted using a larger training data set, show that the approaches used for English are also suitable for Swedish clinical text. However, a small proportion of the errors made by the model are less likely to occur in English text, showing that results might be improved by further tailoring the system to clinical Swedish. The entity recognition results for the individual entities Disorder and Finding show that it is meaningful to separate the general category Medical Problem into these two more granular entity types, e.g. for knowledge mining of co-morbidity relations and disorder-finding relations.
The aim of this study is to explore the possibility of identifying speaker stance in discourse, provide an analytical resource for it and an evaluation of the level of agreement across speakers. We also explore to what extent language users agree about what kind of stances are expressed in natural language use or whether their interpretations diverge. In order to perform this task, a comprehensive cognitive-functional framework of ten stance categories was developed based on previous work on speaker stance in the literature. A corpus of opinionated texts was compiled, the Brexit Blog Corpus (BBC). An analytical protocol and interface (Active Learning and Visual Analytics) for the annotations was set up and the data were independently annotated by two annotators. The annotation procedure, the annotation agreements and the co-occurrence of more than one stance in the utterances are described and discussed. The careful, analytical annotation process has returned satisfactory inter-and intra-annotation agreement scores, resulting in a gold standard corpus, the final version of the BBC.
Medical texts can be difficult to understand for laymen, due to a frequent occurrence of specialised medical terms. Replacing these difficult terms with easier synonyms can, however, lead to improved readability. In this study, we have adapted a method for assessing difficulty of words to make it more suitable to medical Swedish. The difficulty of a word was assessed not only by measuring the frequency of the word in a general corpus, but also by measuring the frequency of substrings of words, thereby adapting the method to the compounding nature of Swedish. All words having a MeSH synonym that was assessed as easier, were replaced in a corpus of medical text. According to the readability measure LIX, the replacement resulted in a slightly more difficult text, while the readability increased according to the OVIX measure and to a preliminary reader study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.