In this work we study the surface enhanced Raman scattering (SERS) produced by hierarchical nanostructures obtained by coupling different anisotropic nanomaterial of two SERS active metals, namely Ag nanostars (AgNSs) and Au nanowires (AuNWs). Ag nanostars (AgNSs) are prepared, by a two-step one-pot synthesis by reduction of AgNO3 with hydroxylamine, trisodium citrate and NaOH. AuNWs are obtained by electroless templated synthesis in track-etched polycarbonate membranes with following etching of the template. The two precursors are bound together by bridging with the bifunctional cysteamine molecule, obtaining AgNS@AuNW hierarchical structures. Benzenethiol (BT) is adsorbed on the nanostructured material and used as SERS probe to study the amplification of Raman signals. Experimental results indicate significantly larger Raman enhancement when BT is adsorbed onto the AgNS@AuNW in comparison to AuNWs alone or decorated with quasi-spherical silver nanoparticles obtaining AgNP@AuNW. Digital simulations performed by the boundary element method agree with the experimental findings, showing higher number of hot spots and significantly higher SERS enhancements for AgNS@AuNW versus AuNWs or AgNSs or AgNP@AuNW.
This review presents the last advances concerning the application to cultural heritage of analytical sensors based on surface enhanced Raman scattering (SERS) and electrochemical transduction. Analytical diagnostics on a work of art is indeed fundamental for dating, restoration and conservation purposes and analytical sensors can provide reliable information at a competitive cost, being usable by non-specialized personal in raw samples and therefore suitable for on-site analysis. After a brief overview on the problem and specificities related to the analysis of works of art, principles and application of SERS for sensing pigments and dyes in paintings is reviewed. Concerning electrochemical sensors, the use of the so-called voltammetry of microparticles is introduced and discussed. For the analysis of macromolecules of biological origin such as protein binders in ancient paintings, the development of immunosensors which exploit SERS or electrochemical detection is presented together with the discussion of the role that advanced nanomaterials plays in improving the functioning of such devices. Finally, prospects and limits derived from the application of the above sensing devices for diagnostics and monitoring of cultural heritage are discussed.
The electrochemical preparation of arrays of copper ultramicro-wires (CuUWs) by using porous membranes as templates is critically revisited, with the goal of obtaining cheap but efficient substrates for surface enhanced Raman spectroscopy (SERS). The role of the materials used for the electrodeposition is examined, comparing membranes of anodized aluminum oxide (AAO) vs. track-etched polycarbonate (PC) as well as copper vs. glassy carbon (GC) as electrode material. A voltammetric study performed on bare electrodes and potentiostatic tests on membrane coated electrodes allowed the optimization of the deposition parameters. The final arrays of CuUWs were obtained by chemical etching of the template, with NaOH for AAO and CH2Cl2 for PC. After total etching of the template, SERS spectra were recorded on CuUWs using benzenthiol as SERS probe with known spectral features. The CuUW substrates displayed good SERS properties, providing enhancement factor in the 103–104 range. Finally, it was demonstrated that higher Raman enhancement can be achieved when CuUWs are decorated with silver nanostars, supporting the formation of SERS active hot-spots at the bimetallic interface.
In historical paintings, the detection of low amounts of pigments and dyes by Raman spectroscopy can sometimes be challenging, in particular for fluorescent dyes. This issue can be overcome by using SERS (surface-enhanced Raman spectroscopy) which takes advantage of the properties of nanostructured metal surfaces to quench fluorescence and enhance Raman signals. In this work, silver nanostars (AgNSs) are applied for the first time to real art samples, in particular to painting cross-sections, exploiting their effective SERS properties for pigment identification. The case study is the Madonna della Misericordia of the National Gallery of Parma (Italy). Cross-sections were analyzed at first by optical microscopy, SEM-EDS, and micro-Raman spectroscopy. Unfortunately, in some cross-sections, the application of conventional Raman spectroscopy was hindered by an intense background fluorescence. Therefore, AgNSs were deposited and used as SERS-active agent. The experimentation was successful, allowing us to identify a modern dye, namely copper phthalocyanine. This result, together with the detection of other modern pigments (titanium white) and expert visual examination, allowed to reconstruct the painting history, postdating its realization from the 15th century (according to the Gallery inventory) to 19th century with a heavy role of recent (middle 20th century) restoration interventions.
Particle in cavity nanostructures were produced by sedimentation of silver nanostars (AgNSs) onto sphere segment void (SSV) cavity structures produced by electrodeposition of gold around templates formed by assembling close packed monolayer arrays of 220 or 600 nm diameter polystyrene spheres. The resulting AgNS@SSV nanostructures were characterized by scanning electron microscopy and their performance as substrates for surface enhanced Raman spectroscopy (SERS) was examined. The enhancement factors obtained for the different structures were evaluated using benzenethiol as Raman probe, which adsorbs on Ag and Au to form a monolayer with uniform coverage, so allowing the enhancement to be quantified. Higher enhancements were obtained for the AgNSs@SSV substrates as compared with the gold SSV structures. The greatest enhancements were obtained when matching cavity and nanostar dimension so that only one nanostar could be accommodated in the cavity. The AgNS@SSV substrates were then shown to be promising substrates for the highly sensitive detection of dyes and, particularly, for the lake‐pigment cochineal lake, providing useful information and novel analytical tool for application in the field of cultural heritage diagnostics and conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.