The phospholipid metabolism of Saccharomyces cerevisiae plays a central role in its adaptation to low temperatures. In order to detect the key genes in this adaptation, various phospholipid mutants from the EUROSCARF collection of Saccharomyces cerevisiae BY4742 were tested to ascertain whether the suppression of some genes could improve the fermentation vitality of the cells at low temperature. The cell vitality and phospholipid composition of these mutants were analysed. Some knockouts improved (hmn1Δ) or impaired (cho2Δ and psd1Δ) their vitality at low temperature (13 C) but were not affected at optimum temperature (25 C). A common trait of the mutants that had some defect in vitality was a lower concentration of phosphatidylcholine and/or phosphatidylethanolamine. The supplementation with choline allowed them to recover viability, probably by synthesis through the Kennedy pathway. Hmn1Δ showed a lower concentration of phosphatidylcholine, which explains the dominant role of the de novo pathway in cellular phosphatidylethanolamine and phosphatidylcholine vs the Kennedy pathway. The absence of such genes as CRD1 or OPI3 produced important changes in phospholipid composition. Cardiolipin was not detected in crd1Δ but phosphatidylglycerol circumvents most of the functions assigned to CL. The considerable reduction in PC diminished the cell vitality of opi3Δ at both temperatures, although the decrease at 13 C was more marked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.