Vulvovaginal candidiasis (VVC) is the most common infection caused by Candida albicans and greatly reduces the quality of life of women affected by it. Due to the ineffectiveness of conventional treatments, there is growing interest in research involving compounds of natural origin. One such compound is curcumin (CUR), which has been proven to be effective against this microorganism. However, some of CUR's physicochemical properties, especially its low aqueous solubility, make the therapeutic application of this compound difficult. Thus, the incorporation of CUR in mucoadhesive liquid crystalline systems (MLCSs) for vaginal administration may be an efficient strategy for the treatment of VVC. MLCSs are capable of potentiating the compound's action, releasing it in a controlled manner, and can enable longer exposure at the site of infection. In this study, MLCSs consisting of oleic acid and ergosterol 5:1 (w/w) as the oily phase, PPG-5-CETETH-20 as the surfactant, and a polymer dispersion of 1% chitosan as the aqueous phase, were developed for the application of CUR (MLCS-CUR) in VVC treatment. The formulations were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), oscillatory rheometry, continuous shear rheometry, texture profile analysis, and in vitro mucoadhesion. In addition, the antimicrobial activity was evaluated in vitro, and the effects on local fungal burden and cytokine profiles were investigated in a murine model of VVC. PLM and SAXS showed that the developed formulations presented a characteristic of a microemulsion. However, after the addition of artificial vaginal mucus (AVM), PLM showed that the formulations had structures similar to the "Maltese cross" characteristic of lamellar MLCS. Mucoadhesive test results showed an increase in the mucoadhesive strength of these formulations. Rheology analyses suggested long-lasting action of the formulation at the infected site. The in vitro antimicrobial activity assays suggested that CUR possesses antifungal activity against Candida albicans, determined after its incorporation into the MLCS. Further, MLCS-CUR was also more effective in vivo in the control of vaginal infection than treatment with fluconazole. Immunological assays showed that the ratio of pro-inflammatory (IL-1β) to anti-inflammatory (TGF-β) cytokines has decreased and that there is a reduction in the number of polymorphonuclear neutrophils recruited to the vaginal lumen, showing that treatment with MLCS-CUR was effective in modulating the inflammatory reaction associated with the infection. The results suggest that MLCSs could potentially be used in the treatment of VVC with CUR.
The purpose of this study was to evaluate the in vitro anticandidal activity of a methanolic extract of Syngonanthus nitens scapes against different Candida species and clinical isolates from patients with vulvovaginal candidiasis (VVC), and its effect in vivo in the treatment of vaginal infection. Chemical characterization of the extract was performed by HPLC-UV analyses and showed the presence of flavones derivatives. The extract was effective against several Candida strains from our collection and species recovered from VVC patients, and was able to inhibit the yeast-hyphal transition. No cytotoxic activity against human female reproductive tract epithelial cells and no hemolytic activity against human red blood cells were observed. In the in vivo model of VVC, we evaluated the efficacy of the intravaginal treatment with a cream containing the extract at doses of 0.5, 1.0 and 2.0%. The treatment eradicated the vaginal fungal burden in infected rats after 8 days of treatment. S. nitens extract could be considered as an effective and non-toxic natural antifungal agent in the treatment of vulvovaginal candidiasis.
Atopic asthma is a chronic allergic disease that involves T-helper type 2 (Th2)-inflammation and airway remodeling. Bronchiolar club cells (CC) and alveolar macrophages (AM) are sentinel cells of airway barrier against inhaled injuries, where allergy induces mucous metaplasia of CC and the alternative activation of AM, which compromise host defense mechanisms and amplify Th2-inflammation. As there is evidence that high levels of environmental endotoxin modulates asthma, the goal of this study was to evaluate if the activation of local host defenses by Lipopolysaccharide (LPS) previous to allergy development can contribute to preserving CC and AM protective phenotypes. Endotoxin stimulus before allergen exposition reduced hallmarks of allergic inflammation including eosinophil influx, Interleukin-4 and airway hyperreactivity, while the T-helper type 1 related cytokines IL-12 and Interferon-γ were enhanced. This response was accompanied by the preservation of the normal CC phenotype and the anti-allergic proteins Club Cell Secretory Protein (CCSP) and Surfactant-D, thereby leading to lower levels of CC metaplasia and preventing the increase of the pro-Th2 cytokine Thymic stromal lymphopoietin. In addition, classically activated alveolar macrophages expressing nitric oxide were promoted over the alternatively activated ones that expressed arginase-1. We verified that LPS induced a long-term overexpression of CCSP and the innate immune markers Toll-like receptor 4, and Tumor Necrosis Factor-α, changes that were preserved in spite of the allergen challenge. These results demonstrate that LPS pre-exposition modifies the local bronchioalveolar microenvironment by inducing natural anti-allergic mechanisms while reducing local factors that drive Th2 type responses, thus modulating allergic inflammation.
Candida albicans is the prevalent etiological agent in acute vulvovaginal infection and the most severe chronic condition known as recurrent vulvovaginal candidiasis (VVC). A critical role of local innate immunity in defense and pathogenesis of vaginal infection by Candida is proposed. The fungal recognition by the innate immune receptor is an essential step for the induction of local responses including cytokines and antimicrobial peptides (AMPs) production for host protection. Using TLR2-deficient mice, we characterized the early innate immune response during VVC. Intravaginal challenge of TLR2-/- mice with C. albicans demonstrated that in response to the initial massive penetration, a strong local inflammatory reaction with recruitment of polymorphonuclear neutrophils was developed. Both interleukin 1β (IL1β)-regarded as the hallmark of VVC immunopathogenesis-and IL6 were increased in vaginal lavage. Murine beta defensin 1 (mBD1), a constitutive AMP with fungicidal and chemotactic activity, was significantly upregulated in wild type (WT) animals in response to infection. Interestingly, in the absence of TLR2 recognition, levels of mBD1 RNA more than twice higher than those in WT infected animals were observed. Interestingly, our results demonstrate that TLR2 signaling is important to control the fungal burden in the vaginal tract. These finding provide new evidence about the role of this innate receptor during VVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.