There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light–matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral–optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light–matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries orbital angular momentum. A single trapped 40 Ca + ion serves as a localized and positioned probe of the exciting field. We drive the S D 1 2 5 2 transition and observe the relative strengths of different transitions, depending on the ionʼs transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Laguerre-Gauss mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments. f E B A J J J cos 4Two main effects related to the topology of the incoming photon state should be noticed: rotational transformation described by the Wigner d-function and topological phase factor. These two novel factors in the absorption amplitude modify the angular momentum selection rules for BB versus the plane-wave
We calculate the circular dichroism (CD) for absorption of the twisted photons, or optical vortices, by atoms, caused by atomic excitation into discrete energy levels. The effects of photon spin on the rates and cross sections of atomic photo-excitation are considered. It is demonstrated that although for electric dipole transitions the atomic excitation rates depend on the relative orientation of photon spin and orbital angular momentum (OAM), the resulting CD is zero. However, CD is nonzero for atomic transitions of higher multipolarity, peaking in the optical vortex center, resulting in preferred absorption of the photons with their spins aligned with OAM. The effects remain large in a paraxial limit, where analytic expressions are provided. The predicted spin asymmetries are equivalent to OAM dichroism for the fixed photon spin.
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogues, independently of the details of the atomic wave functions. We analyzed the photo-absorption cross sections of mixed-multipolarity E2 − M1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photo-excitation rate as a function of the atom's position (or the impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with sub-wavelength accuracy, for example, with Paul traps. Numerical examples are presented for Boron-like highly-charged ions (HCI).
We consider two basic nuclear reactions: Radiative capture of neutrons by protons, n + p → γ + d and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is "twisted" by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and photon beams are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.