Botrytis cinerea can attack over 500 genera of vascular plants and is considered the second phytopathogen in the ‘top ten’ for its economic importance. Traditional fungicides can be ineffective and with increasing fungicide resistance, new sustainable technologies are required. Lately, RNA interference-based fungicides are emerging for their potential uses in crop protection. Therefore, we assessed the potential of this innovative approach targeting the MAP kinase Bmp3 in B. cinerea, a gene involved in saprophytic growth, response to low osmolarity, conidiation, surface sensing, host penetration and lesion formation. After performing a prediction analysis of small interfering RNAs, a 427 nucleotides long dsRNA was selected as construct. We tested the effect of topical applications of dsRNA construct both in vitro by a fungal growth assay in microtiter plates and in vivo on detached lettuce leaves artificially inoculated. In both cases, topical applications of dsRNA led to gene knockdown with a delay in conidial germination, an evident growth retardation and a strong reduction of necrotic lesions on leaves. These results correlated with a strongly reduced expression of Bmp3 gene. In accordance to these findings, the Bmp3 gene could be a promising target for the development of an RNAi-based fungicide against B. cinerea.
Eukaryotic RNA interference (RNAi) results in gene silencing upon the sequence-specific degradation of target transcripts by complementary small RNAs (sRNAs). In plants, RNAi-based tools have been optimized for high efficacy and high specificity, and are extensively used in gene function studies and for crop improvement. However, efficient methods for finely adjusting the degree of induced silencing are missing. Here, we present two different strategies based on artificial sRNAs for fine-tuning targeted RNAi efficacy in plants. First, the degree of silencing induced by synthetic-trans-acting small interfering RNAs (syn-tasiRNAs) can be adjusted by modifying the precursor position from which the syn-tasiRNA is expressed. The accumulation and efficacy of Arabidopsis TAS1c-based syn-tasiRNAs progressively decrease as the syn-tasiRNA is expressed from positions more distal to the trigger miR173 target site. And second, syn-tasiRNA activity can also be tweaked by modifying the degree of base-pairing between the 3′ end of the syn-tasiRNA and the 5′ end of the target RNA. Both strategies were used to finely modulate the degree of silencing of endogenous and exogenous target genes in Arabidopsis thaliana and Nicotiana benthamiana. New high-throughput syn-tasiRNA vectors were developed and functionally analyzed, and should facilitate the precise control of gene expression in multiple plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.