Isolated Gonadotropin-Releasing Hormone (GnRH) Deficiency (IGD) IGD is a genetically and clinically heterogeneous disorder. Mutations in many different genes are able to explain ~40% of the causes of IGD, with the rest of cases remaining genetically uncharacterized. While most mutations are inherited in X-linked, autosomal dominant, or autosomal recessive pattern, several IGD genes are shown to interact with each other in an oligogenic manner. In addition, while the genes involved in the pathogenesis of IGD act on either neurodevelopmental or neuroendocrine pathways, a subset of genes are involved in both pathways, acting as “overlap genes”. Thus, some IGD genes play the role of the modifier genes or “second hits”, providing an explanation for incomplete penetrance and variable expressivity associated with some IGD mutations. The clinical spectrum of IGD includes a variety of disorders including Kallmann Syndrome (KS), i.e. hypogonadotropic hypogonadism with anosmia, and its normosmic variation normosmic idiopathic hypogonadotropic hypogonadism (nIHH), which represent the most severe aspects of the disorder. Apart from these disorders, there are also “milder” and more common reproductive diseases associated with IGD, including hypothalamic amenorrhea (HA), constitutional delay of puberty (CDP) and adult-onset hypogonadotropic hypogonadism (AHH). Interestingly, neurodeveloplmental genes are associated with the KS form of IGD, due to the topographical link between the GnRH neurons and the olfactory placode. On the other hand, neuroendocrine genes are mostly linked to nIHH. However, a great deal of clinical and genetic overlap characterizes the spectrum of the IGD disorders. IGD is also characterized by a wide variety of non-reproductive features, including midline facial defects such as cleft lip and/or palate, renal agenesis, short metacarpals and other bone abnormalities, hearing loss, synkinesia, eye movement abnormalities, poor balance due to cerebellar ataxia, etc. Therefore, genetic screening should be offered in patients with IGD, as it can provide valuable information for genetic counseling and further understanding of IGD.
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.