Ventricular electrical uncoupling measured by electrocardiographic mapping predicted clinical CRT response better than QRS duration or the presence of LBBB.
Background
Brugada syndrome (BrS) is a highly arrhythmogenic cardiac disorder, associated with an increased incidence of sudden death. Its arrhythmogenic substrate in the intact human heart remains ill-defined.
Methods and Results
Using noninvasive ECG imaging (ECGI), we studied 25 BrS patients to characterize the electrophysiologic substrate, and 6 patients with right bundle branch block (RBBB) for comparison. Seven normal subjects provided control data. Abnormal substrate was observed exclusively in the right ventricular outflow tract (RVOT) with the following properties (compared to normal controls; p<0.005): (1)ST-segment elevation (STE) and inverted T-wave of unipolar electrograms (EGMs) (2.21±0.67 vs. 0 mV); (2)delayed RVOT activation (82±18 vs. 37±11 ms); (3)low amplitude (0.47±0.16 vs. 3.74±1.60 mV) and fractionated EGMs, suggesting slow discontinuous conduction; (4)prolonged recovery time (RT; 381±30 vs. 311±34 ms) and activation-recovery intervals (ARIs; 318±32 vs. 241±27 ms), indicating delayed repolarization; (5)steep repolarization gradients (ΔRT/Δx= 96±28 vs. 7±6 ms/cm, ΔARI/Δx= 105±24 vs. 7±5 ms/cm) at RVOT borders. With increased heart rate in 6 BrS patients, reduced STE and increased fractionation were observed. Unlike BrS, RBBB had delayed activation in the entire RV, without STE, fractionation, or repolarization abnormalities on EGMs.
Conclusions
The results indicate that both, slow discontinuous conduction and steep dispersion of repolarization are present in the RVOT of BrS patients. ECGI could differentiate between BrS and RBBB.
Background
Several lines of evidence have suggested that maintenance of atrial fibrillation (AF) depends on reentrant mechanisms. Maintenance of reentry necessitates a sufficiently short refractory period and/or delayed conduction, and AF has been associated with both alterations. Fibrosis, cellular dysfunction and gap junction protein alterations occur in AF and cause conduction delay. We performed this study to test the hypothesis that gap junction protein overexpression would improve conduction and prevent AF.
Methods and Results
Thirty Yorkshire swine were randomized into 2 groups (sinus rhythm (SR) and AF), and within each group into 3 subgroups: sham-operated control, gene therapy with adenovirus expressing connexin (Cx) 40 and Cx43 (n=5 per subgroup). All animals had epicardial gene painting; the AF group had burst atrial pacing. All animals underwent terminal study 7 days after gene transfer. SR animals had strong transgene expression but no atrial conduction changes. In AF animals, controls had reduced and lateralized Cx43 expression, and Cx43 gene transfer restored expression and cellular location to SR control levels. In the AF group, both Cx40 and Cx43 gene transfer improved conduction and reduced AF relative to controls.
Conclusions
Connexin gene therapy preserved atrial conduction and prevented AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.