This study was conducted to investigate the relationship between dental materials and bacterial adhesion on the grounds of their chemical composition and physical properties. Three commercially available dental restorative materials (Filtek™Z350, Filtek™P90 and Spectrum®TPH®) were structurally analyzed and their wettability and surface roughness were evaluated by using Fourier Transform Infrared Spectroscopy, Contact Angle Measurement and Atomic Force Microscopy, respectively. These materials were molded into discs and tested with three bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia) for microbial attachment. The bacterial adhesion was observed at different time intervals, i.e., 0 h, 8 h, 24 h, 48 h and 72 h, along with Colony Forming Unit Count and Optical Density measurement of the media. It was found that all materials showed a degree of conversion with time intervals, i.e., 0 h, 8 h, 24 h, 48 h and 72 h, which led to the availability of functional groups (N–H and C–H) that might promote adhesion. The trend in difference in the extent of bacterial adhesion can be related to particle size, chemical composition and surface wettability of the dental materials.
G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.