Nonpolar InGaN/GaN multiple quantum wells (MQWs) grown on the {11-00} sidewalls of c-axis GaN wires have been grown by organometallic vapor phase epitaxy on c-sapphire substrates. The structural properties of single wires are studied in detail by scanning transmission electron microscopy and in a more original way by secondary ion mass spectroscopy to quantify defects, thickness (1-8 nm) and In-composition in the wells (∼16%). The core-shell MQW light emission characteristics (390-420 nm at 5 K) were investigated by cathodo- and photoluminescence demonstrating the absence of the quantum Stark effect as expected due to the nonpolar orientation. Finally, these radial nonpolar quantum wells were used in room-temperature single-wire electroluminescent devices emitting at 392 nm by exploiting sidewall emission.
We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.
We have studied the electronic confinement in hexagonal ͑0001͒ GaN / AlN multiple quantum wells by means of structural ͑high-resolution x-ray diffraction and transmission electron microscopy͒ as well as optical characterizations, namely intersubband absorption and interband photoluminescence spectroscopies. Intense intersubband absorptions covering the 1.33-1.91 m wavelength range have been measured on a series of samples with well thicknesses varying from 1 to 2.5 nm. The absorption line shape exhibits either a pure Lorentzian shape or multiple peaks. In the first case the broadening is homogeneous with a state-of-the-art low value of 67 meV. We deduce a dephasing time of the electrons in the excited subband T 2 of about 20 fs. For structured spectra the absorption can be perfectly reproduced with a sum of several Lorentzian curves; the individual peaks originate from absorption in quantum well regions with thickness equal to an integer number of monolayers. We have also carried out simulations of the electronic structure which point out the relevance of the nonparabolicity and many-body corrections on the intersubband absorption energy. The intersubband absorption exhibits a blue shift with doping as a result of many-body effects dominated by the exchange interaction. An excellent agreement with the experimental data is demonstrated. The best fit is achieved using a conduction band offset at the GaN / AlN heterointerfaces of 1.7± 0.05 eV and a polarization discontinuity ⌬P / ͑⑀ 0 ⑀ r ͒ of 10±1 MV/cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.