Objective To investigate the accuracy of transvaginal sonography (TVS) and contrast-enhanced magnetic resonance-colonography (CE-MR-C) for the presurgical assessment of deep infiltrating endometriosis (DIE).
Methods
ObjectiveTo compare the risk class attribution with molecular classification unknown to those with molecular classification known, according to the European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology (ESGO/ESTRO/ESP) 2020 guidelines on endometrial cancer, with a focus on risk group migration. Additionally, to evaluate the capability of a novel molecular analysis algorithm to reduce the number of required tests.MethodsWe conducted a retrospective study including all consecutive patients with endometrial cancer undergoing surgery and comprehensive molecular analyses between April 2019 and December 2021. Molecular analyses including immunohistochemistry for p53 and mismatch repair (MMR) proteins, and DNA sequencing for POLE exonuclease domain were performed to classify tumors as POLE-mutated (POLE), MMR-deficient (MMR-d), p53 abnormal (p53abn), or non-specific molecular profile (NSMP). The two risk classifications of the ESGO/ESTRO/ESP 2020 guidelines were compared to estimate the proportion of patients in which the molecular analysis was able to change the risk class attribution. We developed a novel algorithm where the molecular analyses are reserved only for patients in whom incorporation of the molecular classification could change the risk class attribution.ResultsA total of 278 patients were included. Molecular analyses were successful for all cases, identifying the four subgroups: 27 (9.7%) POLE, 77 (27.7%) MMR-d, 49 (17.6%) p53abn, and 125 (45.0%) NSMP. Comparison of risk class attribution between the two classification systems demonstrated discordance in the risk class assignment in 19 (6.8%, 95% CI 4.2% to 10.5%) cases. The application of our novel algorithm would have led to a reduction in the number of POLE sequencing tests by 67% (95% CI 61% to 73%) and a decrease of p53 immunohistochemistry by 27% (95% CI 22% to 33%), as compared with the application of molecular classification to all patients.ConclusionMolecular categorization of endometrial cancer allows the reallocation of a considerable proportion of patients in a different risk class. Furthermore, the application of our algorithm enables a reduction in the number of required tests without affecting the risk classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.