This study links the dynamic capabilities (DCs) theory with performance in dairy sheep farms in Castilla La Mancha (central Spain). The approach is novel as it seeks to understand how best results can be achieved by deploying DCs in farms. The proposal is that dynamic capabilities are interrelated to each other and present a positive impact on the farm’s economic sustainability. A mixed methods approach (a combination of qualitative and quantitative methods of research) was utilized. First, 30 indicators of dynamic capabilities (8 of absorption, 11 of integration, 9 of innovation, and 2 of profits) were selected by applying Delphi’s methodology. Second, a structural equation model (SEM) was applied over a random sample of 157 dairy sheep farms to measure the relationship between DCs and the impact of each capability on farms’ final performance. The existence of positive relationships amongst absorption, integration, and innovation capabilities was evidenced. Absorption and integration capabilities exhibited positive influences on a farm’s final performance. The knowledge of the relationships amongst dynamic capabilities is a new orientation to increase farms’ viability. These findings reveal that the application of the dynamic capabilities theory can explain best farms’ economic sustainability.
El sector ovino es uno de los principales sectores que impulsan la economía en Castilla-La Mancha. Así, en 2016 la denominación de origen protegida (dop) “queso manchego” generó el 61,21 % del valor económico de los productos con denominación de origen en toda España. Sin embargo, actualmente las explotaciones adolecen de un adecuado desempeño gerencial que, unido a la caída en el precio de la leche destinada a la dop y el aumento en el coste de alimentación del ganado, está generando problemas de viabilidad. Teniendo en cuenta esta problemática, el objetivo de este trabajo consiste en identificar un conjunto de indicadores que permitan medir capacidades dinámicas en el sector ovino. Desde la perspectiva metodológica, se ha realizado una revisión de la literatura en capacidades dinámicas y se han determinado potenciales indicadores propios de la gestión ovina que permitan medir dichas capacidades. Como resultado, se han identificado y justificado 54 indicadores para medir los distintos tipos de capacidades. A modo de conclusión, estos indicadores constituyen un referente para que los gerentes puedan medir, diagnosticar y tomar decisiones de mejora en la gestión de sus granjas.
According to the World Bank, approximately 55% of the population lives in cities and a growing trend is expected in the future. Cities generate more than 80% of the world’s GDP, so accurate urban land management would favor sustainable growth, increasing productivity and facilitating innovation and the emergence of new ideas. The use and management of public resources and the concern for cities to become increasingly smart are, therefore, of particular importance. To provide an overview and synthesize knowledge on smart cities in relation to land use, a bibliometric analysis was performed of 475 documents extracted from the Web of Science database, using the SciMAT and VOSviewer programs. Research papers published between 1 January 2000 and 8 September 2022 were considered. Three periods have been identified in which a tendency oriented to deepen in a broad concept of smart city has been evidenced. A growing interest in the topic under investigation has been found, expressed as an increase of the number of publications and research groups focused on the topic. The results of this analysis help to know the most relevant contributions published so far on urban land use in smart cities. This knowledge can help streamline decisions in urban land use in smart cities.
La producción de leche de oveja en Castilla-La Mancha tiene una gran importancia, tanto a nivel económico como social. La oveja manchega juega un papel relevante en la conservación del medioambiente, dado que actúa de forma preventiva con respecto a los incendios y contribuye a la sostenibilidad de la población y el desarrollo de las zonas rurales. Al mismo tiempo, debe enfrentarse a un mundo globalizado con los gustos cambiantes de los consumidores. Esta investigación es una validación cualitativa de los elementos cuantitativos para la medición de capacidades que pueden encontrarse en el modelo publicado de capacidades dinámicas en el sector ovino lechero y, desde una perspectiva profesional, al someterlo a la opinión de personas expertas se aporta valoración profesional a este modelo. Se ha aplicado el método Delphi a un panel de 107 personas expertas en el ámbito de producción animal del sector ovino lechero manchego, siendo un requisito conocer profesionalmente las explotaciones de dicho sector en Castilla-La Mancha. Un 46 % de los expertos proceden del entorno académico con transferencia avalada en el sector, en un periodo de al menos cinco años y donde un 54 % son gerentes, trabajadores y profesionales que asesoran a este sector en un periodo similar. Además, se ha mantenido la equidad desde una perspectiva de género. Las personas consultadas ratificaron en un 56 % los indicadores identificados en el modelo y se encontró una explicación al 77 % de las diferencias identificadas. El estudio concluye con una evaluación favorable tras analizar las diferencias detectadas, donde además, este modelo avalado por expertos es de utilidad para establecer acciones tendentes a reforzar la posición competitiva de las explotaciones.
Familiar mixed dairy sheep farm is the most widespread system in the Mediterranean basin, in Latin America and in developing countries (85%). There is a strong lack of technological adoption in packages of feeding and land use in small-scale farms. To increase competitiveness, it would be of great interest to deepen the knowledge of how innovation was selected, adopted, and spread. The objective of this research was to select strategic feeding and land use technologies in familiar mixed dairy sheep systems and later assess dairy sheep farms in Spain. This objective was assessed by combining qualitative and quantitative methodologies. In the first stage, with the aim to identify and select the appropriate technologies, a panel of 107 experts in dairy sheep production was used. A questionnaire was applied to all of them with successive rounds using Delphi methodology. Later, these technologies were grouped by principal components analysis (PCA) and cluster analysis (CA). In a second stage the technological results from a random sample of 157 farms in the Center of Spain were collected. The technologies selected were linked to the technological adoption level of the farms in Castilla la Mancha by a multiple regression model. Ten technologies were selected by the 107 experts. Four factors were retained by PCA that explained at 67.11% of variance. The first factor is related to feeding strategies, the second to land use for livestock production, the third to efficient management of land resources or ecoefficiency and the fourth to by-products use. The expert evaluation was grouped in three clusters using the Ward’s method and the squared Euclidean distance measure, where the second showed higher values in the adoption level of each technology. The multiple regression model explained the relationship between the technologies and the technological level of the farms (R2 73.53%). The five technologies selected were: use of unifeed (1), supplemental feeding (5), grazing (6), raw materials production (7) and sustainable use of water and soil (10). These ten technologies identified can be directly extended to small-scale dairy farms from other countries in the Mediterranean basin and Latin America. This technological selection was supported from the broad and diverse panel of experts used. Besides, five technologies identified by the quantitative model will be able to be taken into account for the development of public innovation policies. They are direct technologies and easy to apply on the farm and seeking increased viability through innovation vs. intensification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.