Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions.
Diffuse astrocytomas, oligodendrogliomas, and oligoastrocytomas (mixed gliomas) WHO grade II, pleomorphic xanthoastrocytomas (PXAs), pilocytic astrocytomas, and subependymal giant cell astrocytomas (SEGAs) are often referred to as low-grade gliomas. WHO grade II astrocytomas, oligodendrogliomas, and mixed gliomas are characterized by their infiltrative growth, frequent tumor recurrence and a more than 50 % risk for malignant progression. In contrast, pilocytic astrocytomas and SEGAs are circumscribed tumors amenable to a (radio)surgical cure. There are few universally accepted guidelines for the treatment of low-grade gliomas. In this review, three neurosurgeons, a neurologist, a neuropathologist, and a radiation oncologist discuss some of the difficult issues surrounding the diagnosis and treatment of low-grade gliomas from their individual points of view (i. e., classification and neuropathology, MR imaging, stereotactic biopsy, microsurgery, interstitial radiotherapy/brachytherapy, radiotherapy, wait and see strategy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.