Alzheimer disease (AD) is characterized by wide heterogeneity in cognitive and behavioural syndromes, risk factors and pathophysiological mechanisms. Addressing this phenotypic variation will be crucial for the development of precise and effective therapeutics in AD. Sex-related differences in neural anatomy and function are starting to emerge, and sex might constitute an important factor for AD patient stratification and personalized treatment. Although the effects of sex on AD epidemiology are currently the subject of intense investigation, the notion of sex-specific clinicopathological AD phenotypes is largely unexplored. In this Review, we critically discuss the evidence for sex-related differences in AD symptomatology, progression, biomarkers, risk factor profiles and treatment. The cumulative evidence reviewed indicates sex-specific patterns of disease manifestation as well as sex differences in the rates of cognitive decline and brain atrophy, suggesting that sex is a crucial variable in disease heterogeneity. We discuss critical challenges and knowledge gaps in our current understanding. Elucidating sex differences in disease phenotypes will be instrumental in the development of a 'precision medicine' approach in AD, encompassing individual, multimodal, biomarker-driven and sex-sensitive strategies for prevention, detection, drug development and treatment.
Alzheimer's disease (AD) is a neurodegenerative pathology in which amyloid-beta (Abeta) peptide accumulates in different brain areas leading to deposition of plaques and a progressive decline of cognitive functions. After a decade in which a number of transgenic (Tg) mouse models mimicking AD-like amyloid-deposition pathology have been successfully generated, few rat models have been reported that develop intracellular and extracellular Abeta accumulation, together with impairment of cognition. The generation of a Tg rat reproducing the full AD-like amyloid pathology has been elusive. Here we describe the generation and characterization of a new transgenic rat line, coded McGill-R-Thy1-APP, developed to express the human amyloid-beta precursor protein (AbetaPP) carrying both the Swedish and Indiana mutations under the control of the murine Thy1.2 promoter. The selected mono-transgenic line displays an extended phase of intraneuronal Abeta accumulation, already apparent at 1 week after birth, which is widespread throughout different cortical areas and the hippocampus (CA1, CA2, CA3, and dentate gyrus). Homozygous Tg animals eventually produce extracellular Abeta deposits and, by 6 months of age, dense, thioflavine S-positive, amyloid plaques are detected, associated with glial activation and surrounding dystrophic neurites. The cognitive functions in transgenic McGill-R-Thy1-APP rats, as assessed using the Morris water maze task, were found already altered as early as at 3 months of age, when no CNS plaques are yet present. The spatial cognitive impairment becomes more prominent in older animals (13 months), where the behavioral performance of Tg rats positively correlates with the levels of soluble Abeta (trimers) measured in the cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.