Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleocytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.
IGF system contributes significantly to many human malignancies. Targeting IGF-I receptor (IGF-IR) has been reported to be active against several tumors, but particular efficacy was observed only against a minority of Ewing's sarcoma patients. Identification of mechanisms of acquired resistance to anti-IGF-IR agents is mandatory to individualize their use in clinics and optimize cure costs. In this study, we compared gene expression profiles of cells made resistant with three different anti-IGF-IR drugs (human antibodies AVE1642, Figitumumab, or tyrosine kinase inhibitor NVP-AEW541) to highlight common and distinctive mechanisms of resistance. Among common mechanisms, we identified two molecular signatures that distinguish sensitive from resistant cells. Annotation analysis indicated some common altered pathways, such as insulin signaling, MAPK pathway, endocytosis, and modulation of some members of the interferon-induced transmembrane protein family. Among distinctive pathways/processes, resistance to human antibodies involves mainly genes regulating neural differentiation and angiogenesis, whereas resistance to NVP-AEW541 is mainly associated with alterations in genes concerning inflammation and antigen presentation. Evaluation of the common altered pathways indicated that resistant cells seem to maintain intact the IGF-IR internalization/degradation route of sensitive cells but constantly down-regulated its expression. In resistant cells, the loss of proliferative stimulus, normally sustained by IGF-I/IGF-IR autocrine loop in Ewing's sarcoma cells, is compensated by transcriptional up-regulation of IGF-II and insulin receptor-A; this signaling seems to favor the MAPK pathway over the v-akt murine thymoma viral oncogene homolog 1 pathway. Overall, complexity of IGF system requires analytical evaluation of its components to select those patients that may really benefit from this targeted therapy and support the idea of cotargeting IGF-IR and insulin receptor-A to increase the efficacy.
By demonstrating its relationship with clinical outcome, we propose evaluation of miR-34a at diagnosis of EWS patients to allow early risk stratification. Validation of these results would nonetheless ultimately need a prospective assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.