Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease.
Peripheral inflammatory immune responses are thought to play a major role in the pathogenesis of Parkinson’s disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, has been reported to be higher in patients with PD than in healthy controls (HCs). The present study was aimed at determining if the peripheral inflammatory immune response could be influenced by the genetic background of patients with PD. We included a discovery cohort with 222 patients with PD (132 sporadic PD, 44 LRRK2-associated PD (with p.G2019S and p.R1441G variants), and 46 GBA-associated PD), as well as 299 HCs. Demographic and clinical data were recorded. Leukocytes and their subpopulations, and the NLR were measured in peripheral blood. Multivariate lineal regression and post-hoc tests were applied to determine the differences among the groups. Subsequently, a replication study using the Parkinson’s Progression Markers Initiative cohort was performed which included 401 patients with PD (281 sPD patients, 66 LRRK2-PD patients, 54 GBA-PD patients) and a group of 174 HCs. Patients with sporadic PD and GBA-associated PD showed a significantly lower lymphocyte count, a non-significantly higher neutrophil count and a significantly higher NLR than HCs. The peripheral inflammatory immune response of patients with LRRK2-associated PD did not differ from HCs. Our study supports the involvement of a peripheral inflammatory immune response in the pathophysiology of sPD and GBA-associated PD. However, this inflammatory response was not found in LRRK2-associated PD, probably reflecting different pathogenic inflammatory mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.