In this article we use Bayesian methods to fit a Weibull mixture model with an unknown number of components to possibly right censored survival data. This is done using the recently developed, birth-death MCMC algorithm. We also show how to estimate the survivor function and the expected hazard rate from the MCMA output.
Keywords
AbstractIn this article we use Bayesian methods to fit a Weibull mixture model with an unknown number of components to possibly right censored survival data. This is done using the recently developed, birth-death MCMC algorithm. We also show how to estimate the survivor function and the expected hazard rate from the MCMC output..
GARCH models include most of the stylized facts of financial time series and they have been largely used to analyze discrete financial time series. In the last years, continuous time models based on discrete GARCH models have been also proposed to deal with non-equally spaced observations, as COGARCH model based on Lévy processes.In this paper, we propose to use the data cloning methodology in order to obtain estimators of GARCH and COGARCH model parameters. Data cloning methodology uses a Bayesian approach to obtain approximate maximum likelihood estimators avoiding numerically maximization of the pseudo-likelihood function. After a simulation study for both GARCH and COGARCH models using data cloning, we apply this technique to model the behavior of some NASDAQ time series.Keywords: GARCH, Continuous-time GARCH process, Lévy process, COGARCH, data cloning, Bayesian inference, MCMC algorithm. Abstract GARCH models include most of the stylized facts of financial time series and they have been largely used to analyze discrete financial time series. In the last years, continuous time models based on discrete GARCH models have been also proposed to deal with non-equally spaced observations, as COGARCH model based on Lévy processes.In this paper, we propose to use the data cloning methodology in order to obtain estimators of GARCH and COGARCH model parameters. Data cloning methodology uses a Bayesian approach to obtain approximate maximum likelihood estimators avoiding numerically maximization of the pseudo-likelihood function. After a simulation study for both GARCH and COGARCH models using data cloning, we apply this technique to model the behavior of some NASDAQ time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.