Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study
Despite continuous exposure to environmental pathogens, injured mucosa within the oral cavity heals faster and almost scar free compared with skin. Saliva is thought to be one of the main contributing factors. Saliva may possibly also stimulate skin wound healing. If so, it would provide a novel therapy for treating skin wounds, for example, burns. This study aims to investigate the therapeutic wound healing potential of human saliva in vitro. Human saliva from healthy volunteers was filter sterilized before use. Two different in vitro wound models were investigated: (a) open wounds represented by 2D skin and gingiva cultures were used to assess fibroblast and keratinocyte migration and proliferation and (b) blister wounds represented by introducing freeze blisters into organotypic reconstructed human skin and gingiva. Re‐epithelialization and differentiation (keratin K10, K13, K17 expression) under the blister and inflammatory wound healing mediator secretion was assessed. Saliva‐stimulated migration of skin and oral mucosa fibroblasts and keratinocytes, but only fibroblast proliferation. Topical saliva application to the blister wound on reconstructed skin did not stimulate re‐epithelization because the blister wound contained a dense impenetrable dead epidermal layer. Saliva did promote an innate inflammatory response (increased CCL20, IL‐6, and CXCL‐8 secretion) when applied topically to the flanking viable areas of both wounded reconstructed human skin and oral mucosa without altering the skin specific keratin differentiation profile. Our results show that human saliva can stimulate oral and skin wound closure and an inflammatory response. Saliva is therefore a potential novel therapeutic for treating open skin wounds.
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies.
Background The number of people within the European population having at least one tattoo has increased notably, and with it the number of tattoo‐associated clinical complications. Despite this, safety information and testing regarding tattoo inks remain limited. Objective To assess cytotoxicity and sensitization potential of 16 tattoo inks after intradermal injection into reconstructed human skin (RHS). Methods Commercially available tattoo inks were injected intradermally into RHS (reconstructed epidermis on a fibroblast‐populated collagen hydrogel) using a permanent makeup device. RHS biopsies, tissue sections, and culture medium were assessed for cytotoxicity (thiazolyl blue tetrazolium bromide assay [MTT assay]), detrimental histological changes (haematoxylin and eosin staining), and the presence of inflammatory and sensitization cytokines (interleukin [IL]‐1α, IL‐8, IL‐18; enzyme‐linked immunosorbent assay). Results Varying degrees of reduced metabolic activity and histopathological cytotoxic effects were observed in RHS after ink injection. Five inks showed significantly reduced metabolic activity and enhanced sensitization potential compared with negative controls. Discussion Using the RHS model system, four tattoo inks were identified as highly cytotoxic and classified as potential sensitizers, suggesting that allergic contact dermatitis could emerge in individuals carrying these inks. These results indicate that an RHS‐based assessment of cytotoxicity and sensitization potential by intradermal tattoo ink injection is a useful analytical tool to determine ink‐induced deleterious effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.