Systemic sclerosis is a complex autoimmune disease characterized by a chronic and frequently progressive course and by extensive patient-to-patient variability. Like other autoimmune diseases, systemic sclerosis occurs more frequently in women, with a peak of onset in the fifth decade of life. The exact cause of systemic sclerosis remains elusive but is likely to involve environmental factors in a genetically primed individual. Pathogenesis is dominated by vascular changes; evidence of autoimmunity with distinct autoantibodies and activation of both innate and adaptive immunity; and fibrosis of the skin and visceral organs that results in irreversible scarring and organ failure. Intractable progression of vascular and fibrotic organ damage accounts for the chronic morbidity and high mortality. Early and accurate diagnosis and classification might improve patient outcomes. Screening strategies facilitate timely recognition of life-threatening complications and initiation of targeted therapies to halt their progression. Effective treatments of organ-based complications are now within reach. Discovery of biomarkers - including autoantibodies that identify patient subsets at high risk for particular disease complications or rapid progression - is a research priority. Understanding the key pathogenetic pathways, cell types and mediators underlying disease manifestations opens the door for the development of targeted therapies with true disease-modifying potential. For an illustrated summary of this Primer, visit: http://go.nature.com/lchkcA.
Background Plasmacytoid dendritic cells have been implicated in the pathogenesis of systemic sclerosis through mechanisms beyond the previously suggested production of type I interferon. Methods We isolated plasmacytoid dendritic cells from healthy persons and from patients with systemic sclerosis who had distinct clinical phenotypes. We then performed proteome-wide analysis and validated these observations in five large cohorts of patients with systemic sclerosis. Next, we compared the results with those in patients with systemic lupus erythematosus, ankylosing spondylitis, and hepatic fibrosis. We correlated plasma levels of CXCL4 protein with features of systemic sclerosis and studied the direct effects of CXCL4 in vitro and in vivo. Results Proteome-wide analysis and validation showed that CXCL4 is the predominant protein secreted by plasmacytoid dendritic cells in systemic sclerosis, both in circulation and in skin. The mean (±SD) level of CXCL4 in patients with systemic sclerosis was 25,624±2652 pg per milliliter, which was significantly higher than the level in controls (92.5±77.9 pg per milliliter) and than the level in patients with systemic lupus erythematosus (1346±1011 pg per milliliter), ankylosing spondylitis (1368±1162 pg per milliliter), or liver fibrosis (1668±1263 pg per milliliter). CXCL4 levels correlated with skin and lung fibrosis and with pulmonary arterial hypertension. Among chemokines, only CXCL4 predicted the risk and progression of systemic sclerosis. In vitro, CXCL4 downregulated expression of transcription factor FLI1, induced markers of endothelial-cell activation, and potentiated responses of toll-like receptors. In vivo, CXCL4 induced the influx of inflammatory cells and skin transcriptome changes, as in systemic sclerosis. Conclusions Levels of CXCL4 were elevated in patients with systemic sclerosis and correlated with the presence and progression of complications, such as lung fibrosis and pulmonary arterial hypertension. (Funded by the Dutch Arthritis Association and others.)
Transforming growth factor-beta (TGF-beta) stimulates the transcription of the alpha2(I) procollagen gene (COL1A2). The intracellular mediators involved in this response remain poorly understood. In this study, we demonstrate that primary human skin fibroblasts express Smads, a novel family of signaling molecules, in vitro in the absence of TGF-beta. The levels of Smad 7 mRNA was rapidly and transiently increased by TGF-beta. Transient overexpression of Smad 3 and Smad 4, but not Smad 1 or Smad 2, caused trans-activation of a CAT reporter gene driven by a 772 bp segment of the human COL1A2 promoter containing putative TGF-beta response elements. Smad stimulation of promoter activity was ligand independent, but was further enhanced by TGF-beta. Overexpression of a phosphorylation-deficient Smad 3 mutant or wild-type Smad 7, which lacks the carboxy-terminal phosphorylation motif, specifically inhibited TGF-beta-induced activation of COL1A2 promoter. A CAGACA sequence shown to be a functional Smad-binding element in the plasminogen activator inhibitor-1 gene promoter was found within the TGF-beta-response region of the proximal COL1A2 promoter. Gel mobility shift assays showed protein phosphorylation-dependent binding activity in fibroblast nuclear extracts specific for this sequence; TGF-beta treatment strongly stimulated the formation of this DNA-protein complex. Smad was identified as a component of the CAGACA-binding transcription complex in TGF-beta-treated fibroblasts by antibody supershifting. These results demonstrate that (i) Smad 3 transmits TGF-beta signals from the receptor to the COL1A2 promoter in human fibroblasts, and is likely to play an important role in stimulation of COL1A2 promoter activity elicited by TGF-beta; (ii) in fibroblasts, Smads appear to function as inducible DNA-binding transcription factors; and (iii) Smad 7 may be involved in autocrine negative feedback in the regulation of COL1A2 promoter activity by TGF-beta.
that results in irreversible scarring and organ failure. In other word, fibrosis is the end-result of a cascade of vascular and immune responses to environmental injury, and represents a failed tissue repair process. There have been advances in understanding of pathogenic processes that reflect the interplay between immune-inflammatory processes and vasculopathy and fibrosis. This review focuses on recent insights of functional consequences of SSc, highlighting three major characteristics of SSc; microvasculopathy, excessive fibrosis, and immune dysregulation. Microvasculopathy Although, widespread structural changes of the microvasculature are well documented in SSc patients, many aspects of SSc vasculopathy, including the nature of the injury and the fate of injured endothelial cells (ECs), remain poorly understood. Nevertheless, studies in recent years have brought a wealth of new information on the molecular and cellular mechanisms contributing to SSc vasculopathy. Diverse triggers have been implicated in inducing EC damage, including infection, immune-mediated cytotoxicity, anti-endothelial autoantibodies (AECAs), and ischemia-reperfusion injury. The resulting pathogenic changes in ECs may also vary and may include EC apoptosis, endothelial to mesenchymal transition (EndoMT), and other forms of EC activation. A bi-directional
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.