A linkage map of the rapeseed genome comprising 204 RFLP markers, 2 RAPD markers, and 1 phenotypic marker was constructed using a F1 derived doubled haploid population obtained from a cross between the winter rapeseed varieties 'Mansholt's Hamburger Raps' and 'Samourai'. The mapped markers were distributed on 19 linkage groups covering 1441 cM. About 43% of these markers proved to be of dominant nature; 36% of the mapped marker loci were duplicated, and conserved linkage arrangements indicated duplicated regions in the rapeseed genome. Deviation from Mendelian segregation ratios was observed for 27.8% of the markers. Most of these markers were clustered in 7 large blocks on 7 linkage groups, indicating an equal number of effective factors responsible for the skewed segregations. Using cDNA probes for the genes of acyl-carrier-protein (ACP) and β-ketoacyl-ACP-synthase I (KASI) we were able to map three and two loci, respectively, for these genes. The linkage map was used to localize QTLs for seed glucosinolate content by interval mapping. Four QTLs could be mapped on four linkage groups, giving a minimum number of factors involved in the genetic control of this trait. The estimated effects of the mapped QTLs explain about 74% of the difference between both parental lines and about 61.7 % of the phenotypic variance observed in the doubled haploid mapping population.
A F1 microspore-derived DH population, previously used for the development of a rapeseed RFLP map, was analysed for the distribution of erucic acid and seed oil content. A clear three-class segregation for erucic acid content could be observed and the two erucic acid genes of rapeseed were mapped to two different linkage groups on the RFLP map. Although the parents of the segregating DH population showed no significant difference in seed oil content, in the DH population a transgressive segregation in oil content was observed. The segregation closely followed a normal distribution, characteristic of a quantitative trait. Using the program MAPMAKER/QTL, three QTLs for seed oil content could be mapped on three different linkage groups. The additive effects of these QTLs explain about 51% of the phenotypic variation observed for this trait in the DH population. Two of the QTLs for oil content showed a close association in location to the two erucic acid genes, indicating a direct effect of the erucic acid genes on oil content.
The objective of the present study was to estimate the abundance and degree of polymorphism of simple sequence repeat (SSR) markers in rapeseed. By screening about 45000 clones of a small inserts library of rapeseed total DNA the abundances of GA/TC and CA/TG simple sequence repeats in the rapeseed genome were estimated to be approximately one repeat every 100 kb and 400 kb, respectively. After sequencing 13 positive clones, primer pairs could be designed for 11 microsatellite loci. Seven of these primer pairs produced reproducible amplification products in a set of 31 rapeseed genotypes, with one pair amplifying two independent products, giving a total of eight amplified loci. The different microsatellite loci displayed between one and three visible alleles. At four loci, additional null alleles were observed. With up to four alleles, polymorphic microsatellite markers show significantly higher allele numbers in rapeseed than restriction fragment length polymorphism (RFLP) markers. Four of the eight microsatellite markers could be mapped on four different linkage groups of an RFLP map of the rapeseed genome.
During a study of hereditary motor and sensory neuropathy‐Lom in Bulgaria, a previously unrecognized neurological disorder was encountered, mainly in Wallachian Gypsies, who represent a relatively recent genetic isolate. The disorder has been termed the congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome to emphasize its salient features. Fifty individuals from 19 extended pedigrees were identified and examined clinically and electrophysiologically. At least 1 patient from each family was admitted to the hospital in Sofia for full investigation. Pedigree analysis indicates autosomal recessive inheritance. The disorder is recognized in infancy by the presence of congenital cataracts and microcorneas. A predominantly motor neuropathy beginning in the lower limbs and later affecting the upper limbs develops during childhood and leads to severe disability by the third decade. Associated neurological features are a moderate nonprogressive cognitive deficit in most affected individuals together with pyramidal signs and mild chorea in some. Accompanying nonneurological features include short stature, characteristic facial dysmorphism, and hypogonadotrophic hypogonadism. Nerve conduction studies suggest a hypomyelinating/demyelinating neuropathy, confirmed by nerve biopsy. The CCFDN syndrome is thus a pleomorphic autosomal recessive disorder displaying a combination of neurological and nonneurological features. Ann Neurol 1999;45:742–750
During a study of hereditary motor and sensory neuropathy-Lom in Bulgaria, a previously unrecognized neurological disorder was encountered, mainly in Wallachian Gypsies, who represent a relatively recent genetic isolate. The disorder has been termed the congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome to emphasize its salient features. Fifty individuals from 19 extended pedigrees were identified and examined clinically and electrophysiologically. At least 1 patient from each family was admitted to the hospital in Sofia for full investigation. Pedigree analysis indicates autosomal recessive inheritance. The disorder is recognized in infancy by the presence of congenital cataracts and microcorneas. A predominantly motor neuropathy beginning in the lower limbs and later affecting the upper limbs develops during childhood and leads to severe disability by the third decade. Associated neurological features are a moderate nonprogressive cognitive deficit in most affected individuals together with pyramidal signs and mild chorea in some. Accompanying nonneurological features include short stature, characteristic facial dysmorphism, and hypogonadotrophic hypogonadism. Nerve conduction studies suggest a hypomyelinating/demyelinating neuropathy, confirmed by nerve biopsy. The CCFDN syndrome is thus a pleomorphic autosomal recessive disorder displaying a combination of neurological and nonneurological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.