Optical microcavities provide an intriguing platform for the development of low threshold microlasers based on nonlinear effects. Long photon lifetimes within the cavity translate to high circulating optical intensities, thereby reducing the lasing threshold. It is therefore possible to create lasers that can operate in complex environments. In the present work, we use a silica microsphere to demonstrate a cascaded Raman microlaser that operates in air and buffer with the first emission peak around 800 nm in both environments. As expected, the threshold in air is significantly lower than in buffer.
As a result of its non-invasive and non-destructive nature, ultrasound imaging has found a variety of applications in a wide range of fields, including healthcare and electronics. One accurate and sensitive approach for detecting ultrasound waves is based on optical microcavities. Previous research using polymer microring resonators demonstrated detection based on the deformation of the cavity induced by the ultrasound wave. An alternative detection approach is based on the photoelastic effect in which the ultrasound wave induces a strain in the material that is converted to a refractive index change. In the present work, photoelastic-based ultrasound detection is experimentally demonstrated using ultra high quality factor silica optical microcavities. As a result of the increase in Q and in coupled power, the noise equivalent pressure is reduced, and the device response is increased. A finite element method model that includes both the acoustics and optics components of this system is developed, and the predictive accuracy of the model is determined.
The development of DNA analysis methods is rapidly expanding as interest in characterizing subtle variations increases in biomedicine. A promising approach is based on evanescent field sensors that monitor the hybridization process in real time. However, one challenge is discriminating between nonspecific and specific attachment. Here, we demonstrate a hybridization sensor based on an integrated toroidal optical microcavity. The surface is functionalized with ssDNA using an epoxide method, and the evanescent wave of the microresonator excites a fluorescent label on the complementary ssDNA during hybridization. Based on a temporal analysis, the different binding regimes can be identified.
Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.
The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.