Bacterial nanocellulose (BNC) is a novel nanomaterial known for its large surface area, biocompatibility, and non-toxicity. BNC contributes to regenerative processes in the skin but lacks antimicrobial and anti-inflammatory properties. Herein, the development of bioactive wound dressings by loading antibacterial povidone-iodine (PVI) or anti-inflammatory acetylsalicylic acid (ASA) into bacterial cellulose is presented. BNC is produced using Hestrin–Schramm culture media and loaded via immersion in PVI and ASA. Through scanning electron microscopy, BNC reveals open porosity where the bioactive compounds are loaded; the mechanical tests show that the dressing prevents mechanical wear. The loading kinetic and release assays (using the Franz cell method) under simulated fluids present a maximum loading of 589.36 mg PVI/g BNC and 38.61 mg ASA/g BNC, and both systems present a slow release profile at 24 h. Through histology, the complete diffusion of the bioactive compounds is observed across the layers of porcine skin. Finally, in the antimicrobial experiment, BNC/PVI produced an inhibition halo for Gram-positive and Gram-negative bacteria, confirming the antibacterial activity. Meanwhile, the protein denaturation test shows effective anti-inflammatory activity in BNC/ASA dressings. Accordingly, BNC is a suitable platform for the development of bioactive wound dressings, particularly those with antibacterial and anti-inflammatory properties.
Silk fibroin is a polymer of interest thanks to its ability to be transformed into different structures, such as fibers. The electrospun technique can produce micro and nanofibers, presenting advantages like high superficial area and porosity. However, this polymer needs to be dissolved into a liquid solution using solvents. This study evaluates the effect of formic acid and water as solvents on the silk fibroin electrospun fibers morphology, chemical structure, and thermal properties. In this case, silk fibroin was obtained from silk fibrous wastes. The results suggest that the morphology obtained from both solutions has a similar fiber diameter. Electrospun silk fibers using formic acid solution present a relatively high porosity and recrystallization enthalpy. In contrast, the percentage of crystallinity and degradation temperature were higher in samples with aqueous solution. This indicates that the aqueous process allows higher structural ordering, improving the thermal stability for the fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.