Pig muscle phosphoglycerate kinase has been crystallized from polyethyleneglycol in the presence of its substrate 3-phospho-D-glycerate (3-PG) and the structure has been determined at 2.0 A resolution. The structure was solved using the known structure of the substrate-free horse muscle enzyme and has been refined to a crystallographic R-factor of 21.5%. 3-Phospho-D-glycerate is bound to the N-domain of the enzyme through a network of hydrogen bonds to a cluster of basic amino acid residues and by electrostatic interactions between the negatively charged phosphate and these basic protein side chains. This binding site is in good agreement with earlier proposals [Banks et al., Nature (London) 279:773-777, 1979]. The phosphate oxygen atoms are hydrogen bonded to His-62, Arg-65, Arg-122, and Arg-170. The 2-hydroxyl group, which defines the D-isomer of 3PG, is hydrogen bonded to Asp-23 and Asn-25. The carboxyl group of 3-PG points away from the N-domain towards the C-domain and is hydrogen bonded via a water molecule to main chain nitrogen atoms of helix-14. The present structure of the 3-PG-bound pig muscle enzyme is compared with the structure of the substrate-free horse enzyme. Major changes include an ordering of helix-13 and a domain movement, which brings the N-domain closer to the ATP-binding C-domain. This domain movement consists of a 7.7 degree rotation, which is less than previously estimated for the ternary complex. Local changes close to the 3-PG binding site include an ordering of Arg-65 and a shift of helix-5.
Phosphoglycerate kinase (PGK) is the enzyme responsible for the first ATP-generating step of glycolysis and has been implicated extensively in oncogenesis and its development. Solution small angle x-ray scattering (SAXS) data, in combination with crystal structures of the enzyme in complex with substrate and product analogues, reveal a new conformation for the resting state of the enzyme and demonstrate the role of substrate binding in the preparation of the enzyme for domain closure. Comparison of the x-ray scattering curves of the enzyme in different states with crystal structures has allowed the complete reaction cycle to be resolved both structurally and temporally. The enzyme appears to spend most of its time in a fully open conformation with short periods of closure and catalysis, thereby allowing the rapid diffusion of substrates and products in and out of the binding sites. Analysis of the open apoenzyme structure, defined through deformable elastic network refinement against the SAXS data, suggests that interactions in a mostly buried hydrophobic region may favor the open conformation. This patch is exposed on domain closure, making the open conformation more thermodynamically stable. Ionic interactions act to maintain the closed conformation to allow catalysis. The short time PGK spends in the closed conformation and its strong tendency to rest in an open conformation imply a springloaded release mechanism to regulate domain movement, catalysis, and efficient product release. Phosphoglycerate kinase (PGK)2 catalyzes the transfer of phosphate from 1,3-bisphosphoglycerate (1,3BPG) to ADP in the first ATP-generating step of the glycolytic pathway. As a major controller of flux through the pathway, PGK is a viable target for drugs against anaerobic pathogens, such as Trypanosoma and Plasmodium species, which depend solely on glycolysis for energy metabolism (1). In addition to its metabolic role, the phosphoryl transfer activity of PGK is important in the processing of antiretroviral prodrugs that take the form of L-nucleoside analogues (2). The rate-limiting step in the in vivo activation of such compounds has been demonstrated to be the addition of a third phosphate by PGK (3). A third activity of PGK is as a signaling molecule in chordates. It is integral in the response to hypoxia, when it is secreted from the cell and inhibits angiogenesis through a disulfide reductase activity that activates plasminogen autoproteolytic activity, producing angiostatin (4). This activity apparently uses the same mechanism as the normal metabolic reaction and can be inhibited competitively by 3-phosphoglycerate (3PG) or ADP (5). Consequently, PGK has a crucial role in oncogenesis and its development.PGK is composed of two similarly sized domains, both with Rossmann fold topology, termed the N-terminal domain, which binds the phosphoglycerate species 3PG and 1,3BPG, and the C-terminal domain, which binds the nucleotides ADP and ATP. In early crystal structures of PGK (6 -9), it was apparent that this state of the enzyme ...
Transition state analogue (TSA) complexes formed by phosphoglycerate kinase (PGK) have been used to test the hypothesis that balancing of charge within the transition state dominates enzyme-catalyzed phosphoryl transfer. High-resolution structures of trifluoromagnesate (MgF(3)(-)) and tetrafluoroaluminate (AlF(4)(-)) complexes of PGK have been determined using X-ray crystallography and (19)F-based NMR methods, revealing the nature of the catalytically relevant state of this archetypal metabolic kinase. Importantly, the side chain of K219, which coordinates the alpha-phosphate group in previous ground state structures, is sequestered into coordinating the metal fluoride, thereby creating a charge environment complementary to the transferring phosphoryl group. In line with the dominance of charge balance in transition state organization, the substitution K219A induces a corresponding reduction in charge in the bound aluminum fluoride species, which changes to a trifluoroaluminate (AlF(3)(0)) complex. The AlF(3)(0) moiety retains the octahedral geometry observed within AlF(4)(-) TSA complexes, which endorses the proposal that some of the widely reported trigonal AlF(3)(0) complexes of phosphoryl transfer enzymes may have been misassigned and in reality contain MgF(3)(-).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.