In this paper, we propose a rigorous and accurate non-local (in the oversampled region) upscaling framework based on some recently developed multiscale methods [10]. Our proposed method consists of identifying multi-continua parameters via local basis functions and constructing non-local (in the oversampled region) transfer and effective properties. To achieve this, we significantly modify our recent work proposed within Generalized Multiscale Finite Element Method (GMsFEM) in [10] and derive appropriate local problems in oversampled regions once we identify important modes representing each continua. We use piecewise constant functions in each fracture network and in the matrix to write an upscaled equation. Thus, the resulting upscaled equation is of minimal size and the unknowns are average pressures in the fractures and the matrix. We note that the use of non-local upscaled model for porous media flows is not new, e.g., in [14], the authors derive non-local approach. Our main contribution is identifying appropriate local problems together with local spectral modes to represent each continua. The model problem for fractures assumes that one can identify fracture networks. The resulting non-local equation (restricted to the oversampling region, which is several times larger compared to the target coarse block) has the same form as [14] with much smaller local regions. We present numerical results, which show that the proposed approach can provide good accuracy.
Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere.
In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work [1], where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method [13,17]. In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In [17], we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations on a Cartesian fine grid. In this paper, we consider arbitrary fracture orientations and use triangular fine grid and developed GMsFEM for nonlinear flows. Moreover, we develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.